T cell dependent secretory IgA (SIgA) generated in the Peyer’s patches (PPs) of the small intestine shapes a broadly diverse microbiota that is crucial for host physiology. The mutualistic co-evolution of host and microbes led to the relative tolerance of host’s immune system towards commensal microorganisms. The ATP-gated ionotropic P2X7 receptor limits T follicular helper (Tfh) cells expansion and germinal center (GC) reaction in the PPs. Here we show that transient depletion of intestinal ATP can dramatically improve high-affinity IgA response against both live and inactivated oral vaccines. Ectopic expression of Shigella flexneri periplasmic ATP-diphosphohydrolase (apyrase) abolishes ATP release by bacteria and improves the specific IgA response against live oral vaccines. Antibody responses primed in the absence of intestinal extracellular ATP (eATP) also provide superior protection from enteropathogenic infection. Thus, modulation of eATP in the small intestine can affect high-affinity IgA response against gut colonizing bacteria.

ATP released by intestinal bacteria limits the generation of protective IgA against enteropathogens / M. Proietti, L. Perruzza, D. Scribano, G. Pellegrini, R. D'Antuono, F. Strati, M. Raffaelli, S.F. Gonzalez, M. Thelen, W.D. Hardt, E. Slack, M. Nicoletti, F. Grassi. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 10:1(2019 Jan), pp. 250.1-250.11. [10.1038/s41467-018-08156-z]

ATP released by intestinal bacteria limits the generation of protective IgA against enteropathogens

F. Grassi
2019

Abstract

T cell dependent secretory IgA (SIgA) generated in the Peyer’s patches (PPs) of the small intestine shapes a broadly diverse microbiota that is crucial for host physiology. The mutualistic co-evolution of host and microbes led to the relative tolerance of host’s immune system towards commensal microorganisms. The ATP-gated ionotropic P2X7 receptor limits T follicular helper (Tfh) cells expansion and germinal center (GC) reaction in the PPs. Here we show that transient depletion of intestinal ATP can dramatically improve high-affinity IgA response against both live and inactivated oral vaccines. Ectopic expression of Shigella flexneri periplasmic ATP-diphosphohydrolase (apyrase) abolishes ATP release by bacteria and improves the specific IgA response against live oral vaccines. Antibody responses primed in the absence of intestinal extracellular ATP (eATP) also provide superior protection from enteropathogenic infection. Thus, modulation of eATP in the small intestine can affect high-affinity IgA response against gut colonizing bacteria.
Adenosine Triphosphate; Administration, Oral; Animals; Apyrase; Bacterial Proteins; Bacterial Vaccines; Disease Models, Animal; Escherichia coli; Female; Gastroenteritis; Gastrointestinal Microbiome; Germinal Center; Humans; Ileum; Immunoglobulin A, Secretory; Intestinal Mucosa; Mice; Mice, Inbred C57BL; Peyer's Patches; Receptors, Purinergic P2X7; Salmonella Infections; Salmonella typhimurium; Shigella flexneri; T-Lymphocytes, Helper-Inducer
Settore BIO/13 - Biologia Applicata
gen-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
s41467-018-08156-z.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/705788
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 54
social impact