Estimating the carbon storage of forests is essential to support climate change mitigation and promote the transition into a low-carbon emission economy. To achieve this goal, voluntary carbon markets (VCMs) are essential. VCMs are promoted by a spontaneous demand, not imposed by binding targets, as the regulated ones. In Italy, only in Veneto and Piedmont Regions (Northern Italy), VCMs through forestry activities were carried out. Valle Camonica District (Northern Italy, Lombardy Region) is ready for a local VCM, but carbon storage of its forests was never estimated. The aim of this work was to estimate the total carbon storage (TCS; t C ha−1) of forest biomass of Valle Camonica District, at the stand level, taking into account: (1) aboveground biomass, (2) belowground biomass, (3) deadwood, and (4) litter. We developed a user-friendly model, based on site-specifc primary (measured) data, and we applied it to a dataset of 2019 stands extracted from 45 Forest Management Plans. Preliminary results showed that, in 2016, the TCS achieved 76.02 t C ha−1. The aboveground biomass was the most relevant carbon pool (48.86 t C ha−1; 64.27% of TCS). From 2017 to 2029, through multifunctional forest management, the TCS could increase of 2.48 t C ha−1 (+3.26%). In the same period, assuming to convert coppices stands to high forests, an additional TCS of 0.78 t C ha−1 (equal to 2.85 t CO2 ha−1) in the aboveground biomass could be achieved without increasing forest areas. The additional carbon could be certifed and exchanged on a VCM, contributing to climate change mitigation at a local level.

Estimation of carbon storage of forest biomass for voluntary carbon markets: preliminary results / L. Nonini, M. Fiala. - In: JOURNAL OF FORESTRY RESEARCH. - ISSN 1007-662X. - (2019). [Epub ahead of print]

Estimation of carbon storage of forest biomass for voluntary carbon markets: preliminary results

L. Nonini
Primo
;
M. Fiala
Secondo
2019

Abstract

Estimating the carbon storage of forests is essential to support climate change mitigation and promote the transition into a low-carbon emission economy. To achieve this goal, voluntary carbon markets (VCMs) are essential. VCMs are promoted by a spontaneous demand, not imposed by binding targets, as the regulated ones. In Italy, only in Veneto and Piedmont Regions (Northern Italy), VCMs through forestry activities were carried out. Valle Camonica District (Northern Italy, Lombardy Region) is ready for a local VCM, but carbon storage of its forests was never estimated. The aim of this work was to estimate the total carbon storage (TCS; t C ha−1) of forest biomass of Valle Camonica District, at the stand level, taking into account: (1) aboveground biomass, (2) belowground biomass, (3) deadwood, and (4) litter. We developed a user-friendly model, based on site-specifc primary (measured) data, and we applied it to a dataset of 2019 stands extracted from 45 Forest Management Plans. Preliminary results showed that, in 2016, the TCS achieved 76.02 t C ha−1. The aboveground biomass was the most relevant carbon pool (48.86 t C ha−1; 64.27% of TCS). From 2017 to 2029, through multifunctional forest management, the TCS could increase of 2.48 t C ha−1 (+3.26%). In the same period, assuming to convert coppices stands to high forests, an additional TCS of 0.78 t C ha−1 (equal to 2.85 t CO2 ha−1) in the aboveground biomass could be achieved without increasing forest areas. The additional carbon could be certifed and exchanged on a VCM, contributing to climate change mitigation at a local level.
carbon storage assessment; forest management plan; site-specifc primary data; voluntary carbon market; climate change mitigation
Settore AGR/09 - Meccanica Agraria
2019
17-dic-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
2019_Nonini_L_Fiala_M_Estimation_Carbon_Storage_Forest_Voluntary_Carbon_Markets_Preliminary_Results.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 860.31 kB
Formato Adobe PDF
860.31 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/697878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 11
social impact