Salting is an essential step in the production of Cheddar and other cheese varieties and is a well-studied process but the effect of salt addition on the microstructure of the milk ingredients and resulting cheese is not well known. This study provides insights into how the primary components in milk and the cheese matrix respond to salting. High concentrations of salt (15–25% (w/w) NaCl) disrupted fat globules due to the increased osmotic pressure. This led to fat coalescence, resulting in large fat globules >10 μm in diameter, together with submicron sized fat globules ~ 120–500 nm in diameter. Salt addition also prevented the visualization of the milk fat globule membrane when added at high concentrations (25% (w/w) NaCl) and induced asymmetry in liquid ordered domains at lower concentrations (10% (w/w) NaCl). The microstructure of the surface of the milled curd was compacted by salt, appearing coarse with 5% (w/w) NaCl or more hydrated with a denser protein structure with 2.5% (w/w) NaCl. After pressing, the curd junctions were fine and thin within the unsalted sample but coarse and thick where 5% (w/w) NaCl was added. Such coarse junctions appear to reduce binding between curd particles leading to a less cohesive cheese. Our results show that NaCl can significantly impact on the structure of fat and protein matrix of the curd surface if salt is not evenly distributed during dry salting. High concentrations of salt can also change the microstructure and texture of the cheese, resulting in a more heterogeneous product.

The effect of salt on the structure of individual fat globules and the microstructure of dry salted cheddar cheese / L. Ong, P. D’Incecco, L. Pellegrino, H.T.H. Nguyen, S.E. Kentish, S.L. Gras. - In: FOOD BIOPHYSICS. - ISSN 1557-1858. - 15:1(2020 Mar), pp. 85-96. [10.1007/s11483-019-09606-x]

The effect of salt on the structure of individual fat globules and the microstructure of dry salted cheddar cheese

P. D’Incecco
Secondo
;
L. Pellegrino;
2020

Abstract

Salting is an essential step in the production of Cheddar and other cheese varieties and is a well-studied process but the effect of salt addition on the microstructure of the milk ingredients and resulting cheese is not well known. This study provides insights into how the primary components in milk and the cheese matrix respond to salting. High concentrations of salt (15–25% (w/w) NaCl) disrupted fat globules due to the increased osmotic pressure. This led to fat coalescence, resulting in large fat globules >10 μm in diameter, together with submicron sized fat globules ~ 120–500 nm in diameter. Salt addition also prevented the visualization of the milk fat globule membrane when added at high concentrations (25% (w/w) NaCl) and induced asymmetry in liquid ordered domains at lower concentrations (10% (w/w) NaCl). The microstructure of the surface of the milled curd was compacted by salt, appearing coarse with 5% (w/w) NaCl or more hydrated with a denser protein structure with 2.5% (w/w) NaCl. After pressing, the curd junctions were fine and thin within the unsalted sample but coarse and thick where 5% (w/w) NaCl was added. Such coarse junctions appear to reduce binding between curd particles leading to a less cohesive cheese. Our results show that NaCl can significantly impact on the structure of fat and protein matrix of the curd surface if salt is not evenly distributed during dry salting. High concentrations of salt can also change the microstructure and texture of the cheese, resulting in a more heterogeneous product.
cheese; fat globule; microstructure; salt
Settore AGR/15 - Scienze e Tecnologie Alimentari
mar-2020
ago-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
s11483-019-09606-x.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 4.83 MB
Formato Adobe PDF
4.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/694264
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact