We address the dynamics of quantum correlations for a bipartite continuous-variable quantum system interacting with its fluctuating environment. In particular, we consider two independent quantum oscillators initially prepared in a Gaussian state, e.g., a squeezed thermal state, and compare the dynamics resulting from local noise, i.e., oscillators coupled to two independent external fields, to that originating from common noise, i.e., oscillators interacting with a single common field. We prove non-Markovianity (nondivisibility) of the dynamics in both regimes and analyze the connections between nondivisibility, backflow of information, and revivals of quantum correlations. Our main results may be summarized as follows: (i) revivals of quantumness are present in both scenarios, however, the interaction with a common environment better preserves the quantum features of the system; (ii) the dynamics is always nondivisible but revivals of quantum correlations are present only when backflow of information is present as well. We conclude that nondivisibility in its own is not a resource to preserve quantum correlations in our system, i.e., it is not sufficient to observe recoherence phenomena. Rather, it represents a necessary prerequisite to obtain backflow of information, which is the true ingredient to obtain revivals of quantumness.

Nondivisibility versus backflow of information in understanding revivals of quantum correlations for continuous-variable systems interacting with fluctuating environments / J. Trapani, M.G.A. Paris. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 93:4(2016), pp. 042119.1-042119.10. [10.1103/PhysRevA.93.042119]

Nondivisibility versus backflow of information in understanding revivals of quantum correlations for continuous-variable systems interacting with fluctuating environments

J. Trapani;M.G.A. Paris
2016

Abstract

We address the dynamics of quantum correlations for a bipartite continuous-variable quantum system interacting with its fluctuating environment. In particular, we consider two independent quantum oscillators initially prepared in a Gaussian state, e.g., a squeezed thermal state, and compare the dynamics resulting from local noise, i.e., oscillators coupled to two independent external fields, to that originating from common noise, i.e., oscillators interacting with a single common field. We prove non-Markovianity (nondivisibility) of the dynamics in both regimes and analyze the connections between nondivisibility, backflow of information, and revivals of quantum correlations. Our main results may be summarized as follows: (i) revivals of quantumness are present in both scenarios, however, the interaction with a common environment better preserves the quantum features of the system; (ii) the dynamics is always nondivisible but revivals of quantum correlations are present only when backflow of information is present as well. We conclude that nondivisibility in its own is not a resource to preserve quantum correlations in our system, i.e., it is not sufficient to observe recoherence phenomena. Rather, it represents a necessary prerequisite to obtain backflow of information, which is the true ingredient to obtain revivals of quantumness.
decoherence; transition; dynamics
Settore FIS/03 - Fisica della Materia
   Quantum Probes for Complex Systems
   QuProCS
   EUROPEAN COMMISSION
   H2020
   641277
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhysRevA.93.042119.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/691008
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact