In this paper, we designed, synthesized and tested a small set of three new derivatives potentially targeting the D3R-nAChR heteromer, a receptor complex recently identified and characterized as the molecular entity that, in dopaminergic neurons, mediates the neurotrophic effects of nicotine. By means of a partially rigidified spacer of variable length, we incorporated in the new compounds (1a–c) the pharmacophoric substructure of a known β2-subunit-containing nAChR agonist (A-84543) and that of the D2/D3R agonist drug ropinirole. All the compounds retained the ability to bind with high affinity both β2-subunit-containing nAChR and D3R. Compound 1a, renamed HyNDA-1, which is characterized by the shortest linker moiety, was the most interesting ligand. We found, in fact, that HyNDA-1 significantly modulated structural plasticity on both mice and human dopaminergic neurons, an effect strongly prevented by co-incubating this ligand with either nAChR or D3R antagonists. Moreover, the neurotrophic effects of HyNDA-1 were specifically lost by disrupting the complex with specific interfering peptides. Interestingly, by using the Bioluminescence Resonance Energy Transfer 2 (BRET 2 ) assay in HEK-293 transfected cells, we also found that HyNDA-1 has the ability to increase the affinity of interaction between nAChR and D3R. Overall, our results indicate that the neurotrophic effects of HyNDA-1 are mediated by activation of the D3R-nAChR heteromeric complex specifically expressed on dopaminergic neurons.

The novel hybrid agonist HyNDA-1 targets the D3R-nAChR heteromeric complex in dopaminergic neurons / C. Matera, F. Bono, S. Pelucchi, G. Collo, L. Bontempi, C. Gotti, M. Zoli, M. De Amici, C. Missale, C. Fiorentini, C. Dallanoce. - In: BIOCHEMICAL PHARMACOLOGY. - ISSN 0006-2952. - 163:(2019 May), pp. 154-168. [10.1016/j.bcp.2019.02.019]

The novel hybrid agonist HyNDA-1 targets the D3R-nAChR heteromeric complex in dopaminergic neurons

C. Matera
Primo
;
S. Pelucchi;M. De Amici;C. Dallanoce
Ultimo
2019

Abstract

In this paper, we designed, synthesized and tested a small set of three new derivatives potentially targeting the D3R-nAChR heteromer, a receptor complex recently identified and characterized as the molecular entity that, in dopaminergic neurons, mediates the neurotrophic effects of nicotine. By means of a partially rigidified spacer of variable length, we incorporated in the new compounds (1a–c) the pharmacophoric substructure of a known β2-subunit-containing nAChR agonist (A-84543) and that of the D2/D3R agonist drug ropinirole. All the compounds retained the ability to bind with high affinity both β2-subunit-containing nAChR and D3R. Compound 1a, renamed HyNDA-1, which is characterized by the shortest linker moiety, was the most interesting ligand. We found, in fact, that HyNDA-1 significantly modulated structural plasticity on both mice and human dopaminergic neurons, an effect strongly prevented by co-incubating this ligand with either nAChR or D3R antagonists. Moreover, the neurotrophic effects of HyNDA-1 were specifically lost by disrupting the complex with specific interfering peptides. Interestingly, by using the Bioluminescence Resonance Energy Transfer 2 (BRET 2 ) assay in HEK-293 transfected cells, we also found that HyNDA-1 has the ability to increase the affinity of interaction between nAChR and D3R. Overall, our results indicate that the neurotrophic effects of HyNDA-1 are mediated by activation of the D3R-nAChR heteromeric complex specifically expressed on dopaminergic neurons.
Hybrid Nicotinic Dopaminergic Agonist (HyNDA); Receptor heteromers; Rational drug design; Dopaminergic neurons; Neurotrophic effects
Settore CHIM/08 - Chimica Farmaceutica
Settore BIO/14 - Farmacologia
mag-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Biochemical Pharmacology, 2019, 163, 154-168.pdf

solo utenti autorizzati

Tipologia: Publisher's version/PDF
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Matera et al. HyNDA-1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/678632
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact