Motor coordination has been investigated in seven ataxic patients who underwent surgery of the cerebellar hemisphere (4) or of the vermis-paravermis region (3). Subjects, tested ipsilaterally to the lesion, were asked to couple in-phase rhythmic oscillations of the prone hand and the ipsilateral foot for at least 10 s. The oscillation frequency, paced by a metronome, ranged 0.8-3 Hz. Hand and foot angular displacements were measured by a potentiometric technique; EMG from Extensor Carpi Radialis and Tibialis Anterior was recorded by surface electrodes. The phase-relations between the hand and foot movements, as well as between the onsets of motor commands, were calculated. For each of the limbs the frequency-response curve was estimated by plotting the mean phase values between the onset of the motor command and the onset of the related movement. The experiment was repeated with the same schedule after a strong artificial increase of the hand inertial momentum (15 g m(2)). In the unloaded condition, all patients failed to achieve a hand-foot synchrony (0 degrees ), the hand movement showing a net phase-lag. In four hemispheric and one vermian patients (group 1) this lag progressively grew with frequency up to 110 degrees , in the other two vermian patients (group 2) the hand lag kept almost constant ( approximately 45 degrees ). Group 1 subjects were unable to adequate the delay between the motor commands to the increase in frequency, as instead did group 2 subjects, although this was insufficient to produce movement synchrony. Subjects reacted to hand loading with different strategies. In group 1, due to the net increase of hand inertia, movement synchrony required a strong advance of the hand motor command. Patients succeeded in this, but because of their inability to compensate for changes in frequency, they still produced a progressive lag between movements. In group 2, loading strongly increased the hand dynamic stiffness while it slightly lowered that of the foot, resulting in a rather small difference between mechanical properties of the limbs. Thus, compensation required only a slight anticipatory activation of the hand motor command. Patients failed to do so, however they were able to adjust the command delay to the required frequency and produced a constant hand lag. Their main motor handicap was found to to be the incapability of judging the hand lag as a lack of synchrony. These results seems to indicate that the cerebellum must be involved both in measuring the time difference between hand and foot movements and in weighting this delay in function of the oscillation frequency. These two processes may be confined to the vermis-paravermis region and to the hemisphere, respectively.

Coupling of hand and foot voluntary oscillations in patients suffering cerebellar ataxia: different effect of lateral or medial lesions on coordination / G. Cerri, R. Esposti, M. Locatelli, P. Cavallari (PROGRESS IN BRAIN RESEARCH). - In: Creating coordination in the cerebellum / [a cura di] C.I. De Zeeuw, F. Cicirata. - Prima edizione. - [s.l] : Elsevier, 2005. - ISBN 9780444517548. - pp. 227-241 (( convegno Creating Coordination in the Cerebellium tenutosi a Catania nel 2003.

Coupling of hand and foot voluntary oscillations in patients suffering cerebellar ataxia: different effect of lateral or medial lesions on coordination

G. Cerri
Primo
;
R. Esposti
Secondo
;
M. Locatelli;P. Cavallari
2005

Abstract

Motor coordination has been investigated in seven ataxic patients who underwent surgery of the cerebellar hemisphere (4) or of the vermis-paravermis region (3). Subjects, tested ipsilaterally to the lesion, were asked to couple in-phase rhythmic oscillations of the prone hand and the ipsilateral foot for at least 10 s. The oscillation frequency, paced by a metronome, ranged 0.8-3 Hz. Hand and foot angular displacements were measured by a potentiometric technique; EMG from Extensor Carpi Radialis and Tibialis Anterior was recorded by surface electrodes. The phase-relations between the hand and foot movements, as well as between the onsets of motor commands, were calculated. For each of the limbs the frequency-response curve was estimated by plotting the mean phase values between the onset of the motor command and the onset of the related movement. The experiment was repeated with the same schedule after a strong artificial increase of the hand inertial momentum (15 g m(2)). In the unloaded condition, all patients failed to achieve a hand-foot synchrony (0 degrees ), the hand movement showing a net phase-lag. In four hemispheric and one vermian patients (group 1) this lag progressively grew with frequency up to 110 degrees , in the other two vermian patients (group 2) the hand lag kept almost constant ( approximately 45 degrees ). Group 1 subjects were unable to adequate the delay between the motor commands to the increase in frequency, as instead did group 2 subjects, although this was insufficient to produce movement synchrony. Subjects reacted to hand loading with different strategies. In group 1, due to the net increase of hand inertia, movement synchrony required a strong advance of the hand motor command. Patients succeeded in this, but because of their inability to compensate for changes in frequency, they still produced a progressive lag between movements. In group 2, loading strongly increased the hand dynamic stiffness while it slightly lowered that of the foot, resulting in a rather small difference between mechanical properties of the limbs. Thus, compensation required only a slight anticipatory activation of the hand motor command. Patients failed to do so, however they were able to adjust the command delay to the required frequency and produced a constant hand lag. Their main motor handicap was found to to be the incapability of judging the hand lag as a lack of synchrony. These results seems to indicate that the cerebellum must be involved both in measuring the time difference between hand and foot movements and in weighting this delay in function of the oscillation frequency. These two processes may be confined to the vermis-paravermis region and to the hemisphere, respectively.
associated movements; coordination; motor control; cerebellum; human
Settore BIO/09 - Fisiologia
2005
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/6646
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact