Knowledge of immature tracheae mechanical behavior is fundamental in understanding the effects exerted on the upper airways by tidal liquid ventilation (TLV). Particularly, negative pressure can take place along the airways during expiration, which can cause airway collapse and flow limitation; therefore, representing a critical issue in preterm infant patients, whose airways are less stiff than adult ones. In this study, we investigated the expiratory pressure drop vs flow relationship of isolated preterm lamb tracheal samples to determine their hydraulic resistance, collapse pressure and collapse flow rate; a liquid flow through the samples was obtained by applying negative pressure at the outlet (cephalad) extremity of the tracheal sample, while keeping the inlet (caudal) extremity at atmospheric pressure. Histological analyzes were performed on the tracheal samples after each test session, in order to examine the morphological structure of the tracheal wall. Flow resistance tests demonstrated progressive lumen narrowing at increasing pressure drop (ΔP=Pin-Pout). The flow rate increased with ΔP until a plateau was reached, and then decreased, describing the onset of a collapse phenomenon; however, complete occlusion was not reached. The tracheal samples demonstrated a similar behavior to that of a Starling resistor during the collapse phase: when a critical ΔP was reached, collapse was observed starting at the outlet region, which was subjected to the greatest negative pressure, then propagating towards the caudal direction. (Journal of Applied Biomaterials & Biomechanics 2004; 2: 177-82)

Pressure drop-flow relationship in isolated preterm lamb tracheae / M.L. Costantino, P. Bagnoli, G. Dini, G.B. Fiore, M. Soncini, C. Corno, F. Acocella, R. Colombi. - In: JOURNAL OF APPLIED BIOMATERIALS & BIOMECHANICS. - ISSN 1722-6899. - 2(2004), pp. 177-182.

Pressure drop-flow relationship in isolated preterm lamb tracheae

F. Acocella;
2004

Abstract

Knowledge of immature tracheae mechanical behavior is fundamental in understanding the effects exerted on the upper airways by tidal liquid ventilation (TLV). Particularly, negative pressure can take place along the airways during expiration, which can cause airway collapse and flow limitation; therefore, representing a critical issue in preterm infant patients, whose airways are less stiff than adult ones. In this study, we investigated the expiratory pressure drop vs flow relationship of isolated preterm lamb tracheal samples to determine their hydraulic resistance, collapse pressure and collapse flow rate; a liquid flow through the samples was obtained by applying negative pressure at the outlet (cephalad) extremity of the tracheal sample, while keeping the inlet (caudal) extremity at atmospheric pressure. Histological analyzes were performed on the tracheal samples after each test session, in order to examine the morphological structure of the tracheal wall. Flow resistance tests demonstrated progressive lumen narrowing at increasing pressure drop (ΔP=Pin-Pout). The flow rate increased with ΔP until a plateau was reached, and then decreased, describing the onset of a collapse phenomenon; however, complete occlusion was not reached. The tracheal samples demonstrated a similar behavior to that of a Starling resistor during the collapse phase: when a critical ΔP was reached, collapse was observed starting at the outlet region, which was subjected to the greatest negative pressure, then propagating towards the caudal direction. (Journal of Applied Biomaterials & Biomechanics 2004; 2: 177-82)
Experimental ; Trachea ; Preterm lambs ; Hydraulic resistance ; Tidal liquid ventilation
2004
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/64748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact