Objective- Aim of this study was to evaluate changes in LCAT (lecithin:cholesterol acyltransferase) concentration and activity in patients with an acute coronary syndrome, to investigate if these changes are related to the compromised capacity of HDL (high-density lipoprotein) to promote endothelial nitric oxide (NO) production, and to assess if rhLCAT (recombinant human LCAT) can rescue the defective vasoprotective HDL function. Approach and Results- Thirty ST-segment-elevation myocardial infarction (STEMI) patients were enrolled, and plasma was collected at hospital admission, 48 and 72 hours thereafter, at hospital discharge, and at 30-day follow-up. Plasma LCAT concentration and activity were measured and related to the capacity of HDL to promote NO production in cultured endothelial cells. In vitro studies were performed in which STEMI patients' plasma was added with rhLCAT and HDL vasoprotective activity assessed by measuring NO production in endothelial cells. The plasma concentration of the LCAT enzyme significantly decreases during STEMI with a parallel significant reduction in LCAT activity. HDL isolated from STEMI patients progressively lose the capacity to promote NO production by endothelial cells, and the reduction is related to decreased LCAT concentration. In vitro incubation of STEMI patients' plasma with rhLCAT restores HDL ability to promote endothelial NO production, possibly related to significant modification in HDL phospholipid classes. Conclusions- Impairment of cholesterol esterification may be a major factor in the HDL dysfunction observed during acute coronary syndrome. rhLCAT is able to restore HDL-mediated NO production in vitro, suggesting LCAT as potential therapeutic target for restoring HDL functionality in acute coronary syndrome.

Recombinant LCAT (Lecithin:Cholesterol Acyltransferase) Rescues Defective HDL (High-Density Lipoprotein)-Mediated Endothelial Protection in Acute Coronary Syndrome / A. Ossoli, S. Simonelli, M. Varrenti, N. Morici, F. Oliva, M. Stucchi, M. Gomaraschi, A. Strazzella, L. Arnaboldi, M.J. Thomas, M.G. Sorci-Thomas, A. Corsini, F. Veglia, G. Franceschini, S.K. Karathanasis, L. Calabresi. - In: ARTERIOSCLEROSIS, THROMBOSIS, AND VASCULAR BIOLOGY. - ISSN 1079-5642. - 39:5(2019 May), pp. 915-924.

Recombinant LCAT (Lecithin:Cholesterol Acyltransferase) Rescues Defective HDL (High-Density Lipoprotein)-Mediated Endothelial Protection in Acute Coronary Syndrome

A. Ossoli
Primo
;
S. Simonelli
Secondo
;
N. Morici;M. Gomaraschi;A. Strazzella;L. Arnaboldi;A. Corsini;F. Veglia;G. Franceschini;L. Calabresi
Ultimo
2019

Abstract

Objective- Aim of this study was to evaluate changes in LCAT (lecithin:cholesterol acyltransferase) concentration and activity in patients with an acute coronary syndrome, to investigate if these changes are related to the compromised capacity of HDL (high-density lipoprotein) to promote endothelial nitric oxide (NO) production, and to assess if rhLCAT (recombinant human LCAT) can rescue the defective vasoprotective HDL function. Approach and Results- Thirty ST-segment-elevation myocardial infarction (STEMI) patients were enrolled, and plasma was collected at hospital admission, 48 and 72 hours thereafter, at hospital discharge, and at 30-day follow-up. Plasma LCAT concentration and activity were measured and related to the capacity of HDL to promote NO production in cultured endothelial cells. In vitro studies were performed in which STEMI patients' plasma was added with rhLCAT and HDL vasoprotective activity assessed by measuring NO production in endothelial cells. The plasma concentration of the LCAT enzyme significantly decreases during STEMI with a parallel significant reduction in LCAT activity. HDL isolated from STEMI patients progressively lose the capacity to promote NO production by endothelial cells, and the reduction is related to decreased LCAT concentration. In vitro incubation of STEMI patients' plasma with rhLCAT restores HDL ability to promote endothelial NO production, possibly related to significant modification in HDL phospholipid classes. Conclusions- Impairment of cholesterol esterification may be a major factor in the HDL dysfunction observed during acute coronary syndrome. rhLCAT is able to restore HDL-mediated NO production in vitro, suggesting LCAT as potential therapeutic target for restoring HDL functionality in acute coronary syndrome.
acute coronary syndrome; cholesterol acyltransferase; endothelial cell; lipoproteins; nitric oxide
Settore BIO/14 - Farmacologia
mag-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
ATVBAHA.118.311987.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 415.54 kB
Formato Adobe PDF
415.54 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/646511
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact