The viscosity of gel-forming fluids is notoriously complex and its study can benefit from new model systems that enable a detailed control of the network features. Here we use a novel and simple microfluidic-based active microrheology approach to study the transition from Newtonian to non-Newtonian behavior in a DNA hydrogel whose structure, connectivity, density of bonds, bond energy and kinetics are strongly temperature dependent and well known. In a temperature range of 15 °C, the system reversibly and continuously transforms from a Newtonian dispersion of low-valence nanocolloids into a strongly shear-thinning fluid, passing through a set of intermediate states where it behaves as a power-law fluid. We demonstrate that the knowledge of network topology and bond free energy enables to quantitatively predict the observed behavior using established rheology models.

Newtonian to non-newtonian fluid transition of a model transient network / G. Nava, T. Yang, V. Vitali, P. Minzioni, I. Cristiani, F. Bragheri, R. Osellame, L. Bethge, S. Klussmann, E.M. Paraboschi, R. Asselta, T. Bellini. - In: SOFT MATTER. - ISSN 1744-683X. - 14:17(2018 May), pp. 3288-3295. [10.1039/c8sm00373d]

Newtonian to non-newtonian fluid transition of a model transient network

G. Nava
Primo
;
E.M. Paraboschi;R. Asselta
Penultimo
;
T. Bellini
Ultimo
2018

Abstract

The viscosity of gel-forming fluids is notoriously complex and its study can benefit from new model systems that enable a detailed control of the network features. Here we use a novel and simple microfluidic-based active microrheology approach to study the transition from Newtonian to non-Newtonian behavior in a DNA hydrogel whose structure, connectivity, density of bonds, bond energy and kinetics are strongly temperature dependent and well known. In a temperature range of 15 °C, the system reversibly and continuously transforms from a Newtonian dispersion of low-valence nanocolloids into a strongly shear-thinning fluid, passing through a set of intermediate states where it behaves as a power-law fluid. We demonstrate that the knowledge of network topology and bond free energy enables to quantitatively predict the observed behavior using established rheology models.
Chemistry (all); Condensed Matter Physics
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Settore FIS/03 - Fisica della Materia
mag-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
SM 2018.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
SM 18.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/627324
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact