Background: Cancer stem cells (CSCs) play a key role in cancer initiation, progression and chemoresistance. Epigenetic alterations have been identified as prominent factors that contribute to the CSCs phenotype. Here, we investigated the effects of the HDAC inhibitor valproic acid (VPA) and the demethylating agent, 5'azacytidine (DAC) on the stem phenotype of MG63 and Saos2 osteosarcoma cell lines. Methods: Saos2 and MG63 cells were treated with DAC and VPA, alone and in combination. Untreated and treated cells were examined for stemness phenotype by cytometry and real-time PCR. Sarcospheres and colonies formation were also evaluated. Moreover, histone modification and methylation were tested by flow cytomery and western blotting. HDAC2 depleted cells were examined for stemness phenotype and their ability to generate tumors in NOD/SCID IL2R-gamma-0 (NSG) mice. HDAC2 expression on human osteosarcoma tissues was evaluated. Results: We found that DAC and VPA induce an increased expression of stem markers including CD133, OCT4, SOX2 and NANOG, and an increased ability in sarcospheres and colonies formation efficiency. Interestingly, we showed that DAC and VPA treatment decreased repressive histone markers, while increased the active ones. These histone modifications were also associated with an increase of acetylation of histones H3, a decrease of DNA global methylation, HDAC2 and DNMT3a. Furthermore, HDAC2 silenced-MG63 and Saos2 cells acquired a stem phenotype, and promoted in vivo tumorigenesis. In human osteosarcoma tissues, HDAC2 was strongly expressed in nucleus. Conclusions: Collectively, our results suggest that VPA and DAC induce an expansion of osteosarcoma CSCs, and we report for the first time that HDAC2 is a key factor regulating both CSCs phenotype and in vivo cancer growth. In conclusion, we have identified HDAC2 as a potential therapeutic target in human osteosarcoma treatment.

HDAC2 depletion promotes osteosarcoma's stemness both in vitro and in vivo : a study on a putative new target for CSCs directed therapy / M. La Noce, F. Paino, L. Mele, G. Papaccio, T. Regad, A. Lombardi, F. Papaccio, V. Desiderio, V. Tirino. - In: JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH. - ISSN 1756-9966. - 37:1(2018), pp. 296.1-296.15. [10.1186/s13046-018-0978-x]

HDAC2 depletion promotes osteosarcoma's stemness both in vitro and in vivo : a study on a putative new target for CSCs directed therapy

F. Paino;
2018

Abstract

Background: Cancer stem cells (CSCs) play a key role in cancer initiation, progression and chemoresistance. Epigenetic alterations have been identified as prominent factors that contribute to the CSCs phenotype. Here, we investigated the effects of the HDAC inhibitor valproic acid (VPA) and the demethylating agent, 5'azacytidine (DAC) on the stem phenotype of MG63 and Saos2 osteosarcoma cell lines. Methods: Saos2 and MG63 cells were treated with DAC and VPA, alone and in combination. Untreated and treated cells were examined for stemness phenotype by cytometry and real-time PCR. Sarcospheres and colonies formation were also evaluated. Moreover, histone modification and methylation were tested by flow cytomery and western blotting. HDAC2 depleted cells were examined for stemness phenotype and their ability to generate tumors in NOD/SCID IL2R-gamma-0 (NSG) mice. HDAC2 expression on human osteosarcoma tissues was evaluated. Results: We found that DAC and VPA induce an increased expression of stem markers including CD133, OCT4, SOX2 and NANOG, and an increased ability in sarcospheres and colonies formation efficiency. Interestingly, we showed that DAC and VPA treatment decreased repressive histone markers, while increased the active ones. These histone modifications were also associated with an increase of acetylation of histones H3, a decrease of DNA global methylation, HDAC2 and DNMT3a. Furthermore, HDAC2 silenced-MG63 and Saos2 cells acquired a stem phenotype, and promoted in vivo tumorigenesis. In human osteosarcoma tissues, HDAC2 was strongly expressed in nucleus. Conclusions: Collectively, our results suggest that VPA and DAC induce an expansion of osteosarcoma CSCs, and we report for the first time that HDAC2 is a key factor regulating both CSCs phenotype and in vivo cancer growth. In conclusion, we have identified HDAC2 as a potential therapeutic target in human osteosarcoma treatment.
Cancer stem cells; DNMT3a; HDAC2; Methylation; Osteosarcomas; Animals; Azacitidine; Bone Neoplasms; Cell Line, Tumor; DNA Methylation; Heterografts; Histone Deacetylase 2; Humans; Mice; Mice, Inbred NOD; Mice, SCID; Neoplastic Stem Cells; Osteosarcoma; Transfection; Valproic Acid; Oncology; Cancer Research
Settore BIO/17 - Istologia
2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
hdac2 depletion osteosarcoma.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 7.04 MB
Formato Adobe PDF
7.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/626207
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 44
social impact