Ammonium nutrition of higher plants results in rhizosphere acidification due to proton excretion by root cells. The acidification induced by ammonium-fed plants can be exploited to promote a localised metal mobilisation in neutral to alkaline polluted soils and therefore to improve phytoextraction. The effects of ammonium uptake by sunflower (Helianthus annuus L.) plants on the external medium pH, aerial and root growth and tolerance to soluble Cd were studied in hydroponic culture. The ammonium-fed sunflowers induced a strong acidification of the solution and, compared to the nitrate-fed sunflowers, a small modification in mineral nutrition and a different Cd partitioning between root and shoot. Moreover, ammonium nutrition was found to induce a great mobilisation of a sparingly soluble form of cadmium (CdCO3). A pot experiment studied the ability of different ammonium-based fertilisers (ammonium sulphate, ammonium thiosulphate, urea) to modify bulk and rhizo-soil pH, compared to the effect of calcium nitrate and to the unfertilised soil. Furthermore, in order to promote the persistence of ammonium in soil, a combined treatment of ammonium sulphate and DMPP, a nitrification inhibitor, was tested. Soil pH was strongly modified by chemical and biological processes involved in fertiliser transformations. In particular, due to nitrification, all ammonium-based treatments showed a bulk soil acidification of over 1.5 pH units and a relative increase in rhizo-soil pH as a consequence of nitrate uptake. The treatment with DMPP showed an opposite trend with a lower pH in rhizo-soil than in bulk soil. The ability of ammonium-fed plants to mobilise heavy metals from the non-labile pool was studied in another pot experiment using three soils with different properties and at different degree and type of heavy metal contamination. Whatever the soil, the metal concentrations in shoots were higher in plants fed with ammonium (ammonium sulphate plus DMPP treatment). Our results support the hypothesis that ammonium nutrition with nitrification inhibitors is a viable strategy to improve heavy metals phytoextraction while protecting bulk soil from acidification and presumably from metal leaching.

Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower / P. Zaccheo, L.E.V. Crippa, V. Di Muzio Pasta. - In: PLANT AND SOIL. - ISSN 0032-079X. - 283:1-2(2006 May), pp. 43-56. [10.1007/s11104-005-4791-x]

Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower

P. Zaccheo
Primo
;
L.E.V. Crippa
Secondo
;
V. Di Muzio Pasta
Ultimo
2006

Abstract

Ammonium nutrition of higher plants results in rhizosphere acidification due to proton excretion by root cells. The acidification induced by ammonium-fed plants can be exploited to promote a localised metal mobilisation in neutral to alkaline polluted soils and therefore to improve phytoextraction. The effects of ammonium uptake by sunflower (Helianthus annuus L.) plants on the external medium pH, aerial and root growth and tolerance to soluble Cd were studied in hydroponic culture. The ammonium-fed sunflowers induced a strong acidification of the solution and, compared to the nitrate-fed sunflowers, a small modification in mineral nutrition and a different Cd partitioning between root and shoot. Moreover, ammonium nutrition was found to induce a great mobilisation of a sparingly soluble form of cadmium (CdCO3). A pot experiment studied the ability of different ammonium-based fertilisers (ammonium sulphate, ammonium thiosulphate, urea) to modify bulk and rhizo-soil pH, compared to the effect of calcium nitrate and to the unfertilised soil. Furthermore, in order to promote the persistence of ammonium in soil, a combined treatment of ammonium sulphate and DMPP, a nitrification inhibitor, was tested. Soil pH was strongly modified by chemical and biological processes involved in fertiliser transformations. In particular, due to nitrification, all ammonium-based treatments showed a bulk soil acidification of over 1.5 pH units and a relative increase in rhizo-soil pH as a consequence of nitrate uptake. The treatment with DMPP showed an opposite trend with a lower pH in rhizo-soil than in bulk soil. The ability of ammonium-fed plants to mobilise heavy metals from the non-labile pool was studied in another pot experiment using three soils with different properties and at different degree and type of heavy metal contamination. Whatever the soil, the metal concentrations in shoots were higher in plants fed with ammonium (ammonium sulphate plus DMPP treatment). Our results support the hypothesis that ammonium nutrition with nitrification inhibitors is a viable strategy to improve heavy metals phytoextraction while protecting bulk soil from acidification and presumably from metal leaching.
Cadmium; DMPP; Nitrogen fertilisers; Phytoextraction; Rhizosphere acidification; Sunflower
Settore AGR/13 - Chimica Agraria
mag-2006
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/62211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 84
social impact