The S-type Peninsula Pluton (South Africa) exhibits substantial compositional variability and hosts a large variety of mafic and felsic magmatic enclaves with contrasting textures and compositions. Moreover, the pluton is characterized by mechanical concentrations of K-feldspar megacrysts, cordierite and biotite, generating a complex array of magmatic structures including schlieren, pipes, and spectacular sheeted structures. Chemical evidence indicates that the pluton is constructed incrementally by rapid emplacement of numerous magma pulses. Field, and textural data suggest that magmatic structures form by local flow at the emplacement level of highly viscous crystal-rich magmas (i. e. crystallinity up to 50 vol.%) through magma mushes assembled from older batches. At the time of arrival of relatively late magma batches, some areas within the pluton had achieved crystal fractions that allowed the material to act as a solid, whilst maintaining enough melt to prevent formation of sharp intrusional contacts. Magmatic structures represent "snapshots" of processes that operate in multiphase crystal-rich mushes and their genesis is due to mechanical and thermal instabilities in the crystal-rich magma chamber that are triggered by the emplacement of pulses of new magma derived from the melting of a compositionally variable metasedimentary source.

Multi-batch, incremental assembly of a dynamic magma chamber : the case of the Peninsula pluton granite (Cape Granite Suite, South Africa) / F. Farina, G. Stevens, A. Villaros. - In: MINERALOGY AND PETROLOGY. - ISSN 0930-0708. - 106:3-4(2012), pp. 193-216.

Multi-batch, incremental assembly of a dynamic magma chamber : the case of the Peninsula pluton granite (Cape Granite Suite, South Africa)

F. Farina
;
2012

Abstract

The S-type Peninsula Pluton (South Africa) exhibits substantial compositional variability and hosts a large variety of mafic and felsic magmatic enclaves with contrasting textures and compositions. Moreover, the pluton is characterized by mechanical concentrations of K-feldspar megacrysts, cordierite and biotite, generating a complex array of magmatic structures including schlieren, pipes, and spectacular sheeted structures. Chemical evidence indicates that the pluton is constructed incrementally by rapid emplacement of numerous magma pulses. Field, and textural data suggest that magmatic structures form by local flow at the emplacement level of highly viscous crystal-rich magmas (i. e. crystallinity up to 50 vol.%) through magma mushes assembled from older batches. At the time of arrival of relatively late magma batches, some areas within the pluton had achieved crystal fractions that allowed the material to act as a solid, whilst maintaining enough melt to prevent formation of sharp intrusional contacts. Magmatic structures represent "snapshots" of processes that operate in multiphase crystal-rich mushes and their genesis is due to mechanical and thermal instabilities in the crystal-rich magma chamber that are triggered by the emplacement of pulses of new magma derived from the melting of a compositionally variable metasedimentary source.
Geophysics; Geochemistry and Petrology
Settore GEO/07 - Petrologia e Petrografia
2012
Article (author)
File in questo prodotto:
File Dimensione Formato  
9-Farina et al., 2012 Min&Petr.pdf

accesso riservato

Descrizione: articolo principale
Tipologia: Publisher's version/PDF
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
10.1007_s00710-012-0224-8.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/614243
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 32
social impact