The spinel-group minerals, found in a range of igneous rocks, are resistant toweathering and can incorporate several multivalent elements, meaning they have the potential to provide insight into the redox conditions of parental magmas. Naturally occurring spinel can contain varying quantities of Mn, an element which occurs terrestrially and extra-terrestrially as Mn2+, Mn3+, Mn4+ and Mn5+. However, a lack of information on the effects of oxygen fugacity (fO2 ) on: (1) Mn valence state and cation distribution; and (2) on spinel-melt partitioning means that the potential for a Mn-in-spinel oxy-barometer remains largely untested. Here, we use electron probe microanalysis, micro-focus X-ray Absorption Near Edge Structure (XANES) spectroscopy and single-crystal X-ray diffraction (SC-XRD) to investigate cation distribution and valence state in spinels in the Al-Mn-O and Fe-Mn-O systems synthesized at ambient pressure under varying fO2 conditions. In contrast to previous studies, we find that the spectral resolution of the Mn K-edge XANES spectra is insufficient to provide quantitative data onMn valence state and site occupancy, although it does verify that Mn is incorporated as both Mn2+ and Mn3+, distributed over tetrahedral and octahedral sites. Combination of data from XANES and SC-XRD refinements can, however, be used to model Mn, Al and Fe valence and site occupancy. It would be expected thatMn-Fe spinels have the potential to record fO2 conditions in parental melts due to changes to the octahedral site under conditions that were more reducing. However, decoupling the effects of temperature and oxygen fugacity on the TFe3+-TMn2+ exchange in the Mn-Fe spinels remains challenging. In contrast, little variation is noted in Mn-Al spinels as a function of fO2 , implying that crystal chemistry and cation site geometry may significantly influence cation distribution, and by inference, crystal-melt partitioning, in spinel-group minerals.

Cation distribution and valence in synthetic Al–Mn–O and Fe–Mn–O spinels under varying conditions / T.N. Stokes, G.D. Bromiley, G.D. Gatta, N. Rotiroti, N.J. Potts, K. Saunders. - In: MINERALOGICAL MAGAZINE. - ISSN 0026-461X. - 82:4(2018 Aug), pp. 975-992. [10.1180/mgm.2018.109]

Cation distribution and valence in synthetic Al–Mn–O and Fe–Mn–O spinels under varying conditions

G.D. Gatta
Investigation
;
N. Rotiroti
Investigation
;
2018

Abstract

The spinel-group minerals, found in a range of igneous rocks, are resistant toweathering and can incorporate several multivalent elements, meaning they have the potential to provide insight into the redox conditions of parental magmas. Naturally occurring spinel can contain varying quantities of Mn, an element which occurs terrestrially and extra-terrestrially as Mn2+, Mn3+, Mn4+ and Mn5+. However, a lack of information on the effects of oxygen fugacity (fO2 ) on: (1) Mn valence state and cation distribution; and (2) on spinel-melt partitioning means that the potential for a Mn-in-spinel oxy-barometer remains largely untested. Here, we use electron probe microanalysis, micro-focus X-ray Absorption Near Edge Structure (XANES) spectroscopy and single-crystal X-ray diffraction (SC-XRD) to investigate cation distribution and valence state in spinels in the Al-Mn-O and Fe-Mn-O systems synthesized at ambient pressure under varying fO2 conditions. In contrast to previous studies, we find that the spectral resolution of the Mn K-edge XANES spectra is insufficient to provide quantitative data onMn valence state and site occupancy, although it does verify that Mn is incorporated as both Mn2+ and Mn3+, distributed over tetrahedral and octahedral sites. Combination of data from XANES and SC-XRD refinements can, however, be used to model Mn, Al and Fe valence and site occupancy. It would be expected thatMn-Fe spinels have the potential to record fO2 conditions in parental melts due to changes to the octahedral site under conditions that were more reducing. However, decoupling the effects of temperature and oxygen fugacity on the TFe3+-TMn2+ exchange in the Mn-Fe spinels remains challenging. In contrast, little variation is noted in Mn-Al spinels as a function of fO2 , implying that crystal chemistry and cation site geometry may significantly influence cation distribution, and by inference, crystal-melt partitioning, in spinel-group minerals.
spinel; manganese; XANES; oxygen fugacity; jacobsite; galaxite;
Settore GEO/09 - Georisorse Miner.Appl.Mineral.-Petrogr.per l'amb.e i Beni Cul
ago-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Spinels_MinMag2018.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 443.87 kB
Formato Adobe PDF
443.87 kB Adobe PDF Visualizza/Apri
Stokes et al. spinel_DG.pdf

accesso aperto

Descrizione: Versione accettata dall'editore per la stampa
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 396.46 kB
Formato Adobe PDF
396.46 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/605094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact