The T-box transcription factors Tbx2 and Tbx3 are overexpressed in many cancers and in melanoma promote proliferation by actively suppressing senescence. Whether they also contribute to tumor progression via other mechanisms is not known. Here, we identify a novel role for these factors, providing evidence that Tbx3, and potentially Tbx2, directly repress the expression of E-cadherin, a keratinocyte-melanoma adhesion molecule whose loss is required for the acquisition of an invasive phenotype. Overexpression of Tbx2 and Tbx3 in melanoma cells down-regulates endogenous E-cadherin expression, whereas depletion of Tbx3, but not Tbx2, increases E-cadherin mRNA and protein levels and decreases melanoma invasiveness in vitro. Consistent with these observations, in melanoma tissue, Tbx3 and E-cadherin expression are inversely correlated. Depletion of Tbx3 also leads to substantial up-regulation of Tbx2. The results suggest that Tbx2 and Tbx3 may play a dual role during the radial to vertical growth phase transition by both inhibiting senescence via repression of p21(CIP1) expression, and enhancing melanoma invasiveness by decreasing E-cadherin levels.

Tbx3 represses E-cadherin expression and enhances melanoma invasiveness / M. Rodriguez, E. Aladowicz, L. Lanfrancone, C.R. Goding. - In: CANCER RESEARCH. - ISSN 0008-5472. - 68:19(2008 Oct 01), pp. 7872-7881. [10.1158/0008-5472.CAN-08-0301]

Tbx3 represses E-cadherin expression and enhances melanoma invasiveness

E. Aladowicz
Secondo
;
2008

Abstract

The T-box transcription factors Tbx2 and Tbx3 are overexpressed in many cancers and in melanoma promote proliferation by actively suppressing senescence. Whether they also contribute to tumor progression via other mechanisms is not known. Here, we identify a novel role for these factors, providing evidence that Tbx3, and potentially Tbx2, directly repress the expression of E-cadherin, a keratinocyte-melanoma adhesion molecule whose loss is required for the acquisition of an invasive phenotype. Overexpression of Tbx2 and Tbx3 in melanoma cells down-regulates endogenous E-cadherin expression, whereas depletion of Tbx3, but not Tbx2, increases E-cadherin mRNA and protein levels and decreases melanoma invasiveness in vitro. Consistent with these observations, in melanoma tissue, Tbx3 and E-cadherin expression are inversely correlated. Depletion of Tbx3 also leads to substantial up-regulation of Tbx2. The results suggest that Tbx2 and Tbx3 may play a dual role during the radial to vertical growth phase transition by both inhibiting senescence via repression of p21(CIP1) expression, and enhancing melanoma invasiveness by decreasing E-cadherin levels.
Tbx3 ; Tbx2 ; E-cadherin ; melanoma
1-ott-2008
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/60307
Citazioni
  • ???jsp.display-item.citation.pmc??? 68
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 121
social impact