CD8+ T cells infiltrating tumors are largely dysfunctional, but whether a subset maintains superior functionality remains ill defined. By high-dimensional single cell analysis of millions of CD8+ T cells from 53 individuals with lung cancer, we defined those subsets that are enriched in tumors compared with cancer-free tissues and blood. Besides exhausted and activated cells, we identified CXCR5+ TIM-3- CD8+ T cells with a partial exhausted phenotype, while retaining gene networks responsible for stem-like plasticity and cytotoxicity, as revealed by single cell sequencing of the whole transcriptome. Ex vivo, CXCR5+ TIM-3- CD8+ T cells displayed enhanced self-renewal and multipotency compared with more differentiated subsets and were largely polyfunctional. Analysis of inhibitory and costimulatory receptors revealed PD-1, TIGIT, and CD27 as possible targets of immunotherapy. We thus demonstrate a hierarchy of differentiation in the context of T cell exhaustion in human cancer similar to that of chronically infected mice, which is further shown to disappear with disease progression.

High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors / J. Brummelman, E.M.C. Mazza, G. Alvisi, F.S. Colombo, A. Grilli, J. Mikulak, D. Mavilio, M. Alloisio, F. Ferrari, E. Lopci, P. Novellis, G. Veronesi, E. Lugli. - In: JOURNAL OF EXPERIMENTAL MEDICINE. - ISSN 0022-1007. - 215:10(2018 Oct), pp. 2520-2535. [10.1084/jem.20180684]

High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors

F.S. Colombo;A. Grilli;J. Mikulak;D. Mavilio;F. Ferrari;
2018

Abstract

CD8+ T cells infiltrating tumors are largely dysfunctional, but whether a subset maintains superior functionality remains ill defined. By high-dimensional single cell analysis of millions of CD8+ T cells from 53 individuals with lung cancer, we defined those subsets that are enriched in tumors compared with cancer-free tissues and blood. Besides exhausted and activated cells, we identified CXCR5+ TIM-3- CD8+ T cells with a partial exhausted phenotype, while retaining gene networks responsible for stem-like plasticity and cytotoxicity, as revealed by single cell sequencing of the whole transcriptome. Ex vivo, CXCR5+ TIM-3- CD8+ T cells displayed enhanced self-renewal and multipotency compared with more differentiated subsets and were largely polyfunctional. Analysis of inhibitory and costimulatory receptors revealed PD-1, TIGIT, and CD27 as possible targets of immunotherapy. We thus demonstrate a hierarchy of differentiation in the context of T cell exhaustion in human cancer similar to that of chronically infected mice, which is further shown to disappear with disease progression.
Settore MED/46 - Scienze Tecniche di Medicina di Laboratorio
Settore MED/04 - Patologia Generale
Settore MED/06 - Oncologia Medica
ott-2018
28-ago-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Brummelmann J. et al.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.65 MB
Formato Adobe PDF
3.65 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/592060
Citazioni
  • ???jsp.display-item.citation.pmc??? 129
  • Scopus 220
  • ???jsp.display-item.citation.isi??? 212
social impact