An innovative low-tech solution to fabricate electro-active biochar (e-biochar) electrodes for bio-electrochemical systems (BES) is proposed. Ligno-cellulosic stalks of Giant Cane (Arundo Donax L.) were subjected to pyrolysis treatment at 900 °C for 1 h. The material kept its original hollow cylindrical shape, rigid morphology and porous texture, as confirmed by 3DX-ray micro-computed tomography. These characteristics are suitable for its use at the air-water interface in BES, as air-breathing bio-cathodes. BET (Brunauer-Emmett-Teller) specific surface area was equal to 114 ± 4 m2 g−1, with more than 95% of pores in the microporosity range (pore diameter < 1 nm). Surface electrocatalytic activity was sufficient to sustain oxygen reduction reaction at pH 7, in terms of both onset potential (−0.02 V vs Ag/AgCl) and reduction limiting current density (1 A m−2). Electrical resistivity measurements confirmed sufficient conductivity (8.9 × 10−3 ± 1 × 10−4 Ω m) of the material and Raman spectroscopy allowed to estimate a graphitization degree in relation to the ID/IG, equal to 2.26. In parallel, the e-biochar were tested as air-exposed bio-cathodes in BES, coupled to carbon cloth bio-anodes. After inoculation with wastewater from swine-farming, current densities were generated in the range of 100–150 mA m−2, along more than 2 months of operation, under sodium acetate feeding. Confocal laser scanning imaging revealed consistent biofilm formation on the water-side surface of the cathodes, while a nearly-complete absence of it at the air-side. These e-biochar electrodes might open innovative perspectives to scale-up BES for different applications. Here, consistent salts depositions on the material after 70 days of exposure to the wastewater, suggest that e-biochar biocathodes might serve to recycle nutrients to agricultural soils, through minerals-enriched biochar.

Air-breathing bio-cathodes based on electro-active biochar from pyrolysis of Giant Cane stalks / S. Marzorati, A. Goglio, S. Fest-Santini, D. Mombelli, F. Villa, P. Cristiani, A. Schievano. - In: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. - ISSN 0360-3199. - 44:9 Special issue(2019 Feb 15), pp. 4496-4507. ((Intervento presentato al 44. convegno European Fuel Cell Technology and Applications (EFC) Piero Lunghi Conference and Exhibition : December, 12th - 15th tenutosi a Napoli nel 2017 [10.1016/j.ijhydene.2018.07.167].

Air-breathing bio-cathodes based on electro-active biochar from pyrolysis of Giant Cane stalks

S. Marzorati
Primo
;
A. Goglio
Secondo
;
F. Villa;A. Schievano
Ultimo
2019

Abstract

An innovative low-tech solution to fabricate electro-active biochar (e-biochar) electrodes for bio-electrochemical systems (BES) is proposed. Ligno-cellulosic stalks of Giant Cane (Arundo Donax L.) were subjected to pyrolysis treatment at 900 °C for 1 h. The material kept its original hollow cylindrical shape, rigid morphology and porous texture, as confirmed by 3DX-ray micro-computed tomography. These characteristics are suitable for its use at the air-water interface in BES, as air-breathing bio-cathodes. BET (Brunauer-Emmett-Teller) specific surface area was equal to 114 ± 4 m2 g−1, with more than 95% of pores in the microporosity range (pore diameter < 1 nm). Surface electrocatalytic activity was sufficient to sustain oxygen reduction reaction at pH 7, in terms of both onset potential (−0.02 V vs Ag/AgCl) and reduction limiting current density (1 A m−2). Electrical resistivity measurements confirmed sufficient conductivity (8.9 × 10−3 ± 1 × 10−4 Ω m) of the material and Raman spectroscopy allowed to estimate a graphitization degree in relation to the ID/IG, equal to 2.26. In parallel, the e-biochar were tested as air-exposed bio-cathodes in BES, coupled to carbon cloth bio-anodes. After inoculation with wastewater from swine-farming, current densities were generated in the range of 100–150 mA m−2, along more than 2 months of operation, under sodium acetate feeding. Confocal laser scanning imaging revealed consistent biofilm formation on the water-side surface of the cathodes, while a nearly-complete absence of it at the air-side. These e-biochar electrodes might open innovative perspectives to scale-up BES for different applications. Here, consistent salts depositions on the material after 70 days of exposure to the wastewater, suggest that e-biochar biocathodes might serve to recycle nutrients to agricultural soils, through minerals-enriched biochar.
Electroactive biochar; e-biochar; Bio-electrochemical systems; Air-cathode; Wastewater treatment; Pyrolysis
Settore AGR/16 - Microbiologia Agraria
15-feb-2019
16-ago-2018
Università di Perugia
Università di Napoli
Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico (ENEA)
Article (author)
File in questo prodotto:
File Dimensione Formato  
ManuscriptFinal revised.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri
1-s2.0-S0360319918324182-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/588896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact