Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication.

Structure of human Cdc45 and implications for CMG helicase function / A.C. Simon, V. Sannino, V. Costanzo, L. Pellegrini. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 7:(2016 May 18), pp. 11638.1-11638.15. [10.1038/ncomms11638]

Structure of human Cdc45 and implications for CMG helicase function

V. Costanzo
Penultimo
Supervision
;
2016

Abstract

Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication.
Settore MED/04 - Patologia Generale
18-mag-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
ncomms11638.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 4.41 MB
Formato Adobe PDF
4.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/577864
Citazioni
  • ???jsp.display-item.citation.pmc??? 37
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 56
social impact