Au nanorods (NRs) modified nanostructured TiO2/ITO electrodes have been fabricated and characterized in order to develop a biosensing platform for the photoelectrochemical determination of microRNAs. The proposed method is based on the use of thiolated DNA capture-probes (CPs) immobilized onto Au NR surface. The Au NRs are chemically bound at the surface of TiO2/ITO electrodes by means of the mercaptosuccinic acid linker. Subsequently, the DNA CPs are bound to the Au NR surface through the thiolate group, and reacted with the target RNA sequence. Finally, the obtained biosensing platform is incubated with alkaline phosphatase and l-ascorbic acid 2-phosphate (AAP) enzymatic substrate, for the in situ generation of ascorbic acid (AA). Such AA molecule, coordinating to surface Ti atoms, generates a charge transfer complex, that results in a shift of the UV absorption threshold toward the visible spectral region of the nanostructured TiO2 forming the electrode and, hence, in the occurrence of an absorption band centered at 450 nm. The photoelectrochemical monitoring of the formation of the AA-TiO2 complex, under the visible light of a commercial LED light source, allows the selective and quantitative detection of the target microRNA strands.

Ascorbic acid-sensitized Au nanorods-functionalized nanostructured TiO2 transparent electrodes for photoelectrochemical genosensing / F. Bettazzi, S. Laschi, D. Voccia, C. Gellini, G. Pietraperzia, L. Falciola, V. Pifferi, A. Testolin, C. Ingrosso, T. Placido, R. Comparelli, M. Lucia Curri, I. Palchetti. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - 276(2018 Jun 20), pp. 389-398.

Ascorbic acid-sensitized Au nanorods-functionalized nanostructured TiO2 transparent electrodes for photoelectrochemical genosensing

L. Falciola;V. Pifferi;A. Testolin;
2018

Abstract

Au nanorods (NRs) modified nanostructured TiO2/ITO electrodes have been fabricated and characterized in order to develop a biosensing platform for the photoelectrochemical determination of microRNAs. The proposed method is based on the use of thiolated DNA capture-probes (CPs) immobilized onto Au NR surface. The Au NRs are chemically bound at the surface of TiO2/ITO electrodes by means of the mercaptosuccinic acid linker. Subsequently, the DNA CPs are bound to the Au NR surface through the thiolate group, and reacted with the target RNA sequence. Finally, the obtained biosensing platform is incubated with alkaline phosphatase and l-ascorbic acid 2-phosphate (AAP) enzymatic substrate, for the in situ generation of ascorbic acid (AA). Such AA molecule, coordinating to surface Ti atoms, generates a charge transfer complex, that results in a shift of the UV absorption threshold toward the visible spectral region of the nanostructured TiO2 forming the electrode and, hence, in the occurrence of an absorption band centered at 450 nm. The photoelectrochemical monitoring of the formation of the AA-TiO2 complex, under the visible light of a commercial LED light source, allows the selective and quantitative detection of the target microRNA strands.
Ascorbic acid; Au nanorods; Nanostructured TiO2; Nucleic acid; Photoelectrochemical; Small RNAs
Settore CHIM/01 - Chimica Analitica
20-giu-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Ascorbic acid-sensitized Au nanorods-functionalized nanostructured TiO_ce_inf loc=__post___2__ce_inf_transparent electrodes for photoelectrochemical genosensing.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2018_Bettazzi.pdf

Open Access dal 13/06/2019

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/575690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact