In recent years, research efforts have focused on the development of safe and efficient H2 generation/storage materials toward a fuel-cell-based H2 economy as a long-term solution in the near future. Herein, we report the development of Pd nanoparticles supported on carbon nanofibers (CNFs) via sol-immobilisation and impregnation techniques. Thorough characterisation has been carried out by means of XRD, XPS, SEM-EDX, TEM, and BET. The catalysts have been evaluated for the catalytic decomposition of formic acid (HCOOH), which has been identified as a safe and convenient H2 carrier under mild conditions. The influence of preparation method was investigated and catalysts prepared by the sol-immobilisation method showed higher catalytic performance (PdSI/CNF) than their analogues prepared by the impregnation method (PdIMP/CNF). A high turnover frequency (TOF) of 979 h−1 for PdSI/CNF and high selectivity (>99.99%) was obtained at 30 °C for the additive-free formic acid decomposition. Comparison with a Pd/AC (activated charcoal) catalyst synthesised with sol-immobilisation method using as a support activated charcoal (AC) showed an increase of catalytic activity by a factor of four, demonstrating the improved performance by choosing CNFs as the preferred choice of support for the deposition of preformed colloidal Pd nanoparticles

Investigation of the Catalytic Performance of Pd/CNFs for Hydrogen Evolution from Additive-Free Formic Acid Decomposition / F. Sanchez, D. Motta, L. Bocelli, S. Albonetti, A. Roldan, C. Hammond, A. Villa, N. Dimitratos. - In: C. - ISSN 2311-5629. - 4:2(2018 May 01). [10.3390/c4020026]

Investigation of the Catalytic Performance of Pd/CNFs for Hydrogen Evolution from Additive-Free Formic Acid Decomposition

A. Villa
Penultimo
;
2018

Abstract

In recent years, research efforts have focused on the development of safe and efficient H2 generation/storage materials toward a fuel-cell-based H2 economy as a long-term solution in the near future. Herein, we report the development of Pd nanoparticles supported on carbon nanofibers (CNFs) via sol-immobilisation and impregnation techniques. Thorough characterisation has been carried out by means of XRD, XPS, SEM-EDX, TEM, and BET. The catalysts have been evaluated for the catalytic decomposition of formic acid (HCOOH), which has been identified as a safe and convenient H2 carrier under mild conditions. The influence of preparation method was investigated and catalysts prepared by the sol-immobilisation method showed higher catalytic performance (PdSI/CNF) than their analogues prepared by the impregnation method (PdIMP/CNF). A high turnover frequency (TOF) of 979 h−1 for PdSI/CNF and high selectivity (>99.99%) was obtained at 30 °C for the additive-free formic acid decomposition. Comparison with a Pd/AC (activated charcoal) catalyst synthesised with sol-immobilisation method using as a support activated charcoal (AC) showed an increase of catalytic activity by a factor of four, demonstrating the improved performance by choosing CNFs as the preferred choice of support for the deposition of preformed colloidal Pd nanoparticles
H2 production; formic acid decomposition; green chemistry; renewable feedstock; Pd nanoparticles; carbon nanofibers
Settore CHIM/03 - Chimica Generale e Inorganica
Settore CHIM/04 - Chimica Industriale
1-mag-2018
C
Article (author)
File in questo prodotto:
File Dimensione Formato  
carbon-04-00026.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.79 MB
Formato Adobe PDF
4.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/572432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact