In the last few years, copper coordination compounds turned out to be effective competitors of cobalt complexes as redox mediators in the formulation of iodine-free electrolytes for dye-sensitized solar cells (DSSCs). However, the lack of a clear correlation between electrochemical signatures of copper complexes (i.e. half-wave potential and heterogeneous electron transfer rate) and photoelectrochemical performance of solar devices makes difficult the optimization of their coordination sphere. Therefore, to partially fill this gap and to elucidate the intrinsic correlation between the molecular architecture of these complexes and their electrochemical features, we prepared four Cu+/2+redox couples in which the copper center is coordinated by two 1,10-phenanthrolines bearing various substituents in position 2. These complexes were well characterized, from both electrochemical and spectroscopic point of view, and tested as electron shuttles in lab-scale photoelectrochemical cells sensitized with two efficient π-extended benzothiadiazole dyes. It appeared that 2-aryl-1,10-phenanthrolines effectively combine suitable optical and electrochemical properties. While a fast electron transfer kinetics generally positively affects the dye regeneration process, an optimal balance between dye regeneration efficiency, mass transport and heterogeneous electron transfer at both the counter electrode and at the TiO2interface, must be achieved in order to optimize DSSC performance. Within our series, the top performer was [Cu(2-tolyl-1,10-phenanthroline)2]+/2+which achieved a relative 20% and 15% improvement in power conversion efficiency (under 100 mW s−1simulated AM 1.5G illumination) with respect to control cells filled with [Co(bpy)3]2+/3+(bpy = 2,2′-bipyridine) and I−/I3−electrolytes, respectively.

Bis(1,10-phenanthroline) copper complexes with tailored molecular architecture: from electrochemical features to application as redox mediators in dye-sensitized solar cells / E. Benazzi, M. Magni, A. Colombo, C. Dragonetti, S. Caramori, C.A. Bignozzi, R. Grisorio, G.P. Suranna, M.P. Cipolla, M. Manca, D. Roberto. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - 271(2018 May 01), pp. 180-189.

Bis(1,10-phenanthroline) copper complexes with tailored molecular architecture: from electrochemical features to application as redox mediators in dye-sensitized solar cells

M. Magni
;
A. Colombo
;
C. Dragonetti;D. Roberto
2018

Abstract

In the last few years, copper coordination compounds turned out to be effective competitors of cobalt complexes as redox mediators in the formulation of iodine-free electrolytes for dye-sensitized solar cells (DSSCs). However, the lack of a clear correlation between electrochemical signatures of copper complexes (i.e. half-wave potential and heterogeneous electron transfer rate) and photoelectrochemical performance of solar devices makes difficult the optimization of their coordination sphere. Therefore, to partially fill this gap and to elucidate the intrinsic correlation between the molecular architecture of these complexes and their electrochemical features, we prepared four Cu+/2+redox couples in which the copper center is coordinated by two 1,10-phenanthrolines bearing various substituents in position 2. These complexes were well characterized, from both electrochemical and spectroscopic point of view, and tested as electron shuttles in lab-scale photoelectrochemical cells sensitized with two efficient π-extended benzothiadiazole dyes. It appeared that 2-aryl-1,10-phenanthrolines effectively combine suitable optical and electrochemical properties. While a fast electron transfer kinetics generally positively affects the dye regeneration process, an optimal balance between dye regeneration efficiency, mass transport and heterogeneous electron transfer at both the counter electrode and at the TiO2interface, must be achieved in order to optimize DSSC performance. Within our series, the top performer was [Cu(2-tolyl-1,10-phenanthroline)2]+/2+which achieved a relative 20% and 15% improvement in power conversion efficiency (under 100 mW s−1simulated AM 1.5G illumination) with respect to control cells filled with [Co(bpy)3]2+/3+(bpy = 2,2′-bipyridine) and I−/I3−electrolytes, respectively.
Copper redox mediators; Dye-sensitized solar cells; Homoleptic bis(1,10-phenanthroline) copper complexes; Iodine-free electrolyte; Structure-activity relationship; Chemical Engineering (all); Electrochemistry
Settore CHIM/03 - Chimica Generale e Inorganica
1-mag-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
65. electrochim acta 2018, 271, 180-9.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ECA.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 918.74 kB
Formato Adobe PDF
918.74 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/569489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact