Background: Nowadays, the downregulation of genes involved in the pathogenesis of severe lung diseases through local siRNA delivery appears an interesting therapeutic approach. In this study, we propose novel hybrid lipid-polymer nanoparticles (hNPs) consisting of poly(lactic-co-glycolic) acid (PLGA) and dipalmitoyl phosphatidylcholine (DPPC) as siRNA inhalation system. Methods: A panel of DPPC/PLGA hNPs was prepared by emulsion/solvent diffusion and fully characterized. A combination of model siRNAs against the sodium transepithelial channel (ENaC) was entrapped in optimized hNPs comprising or not poly(ethylenimine) (PEI) as third component. siRNA-loaded hNPs were characterized for encapsulation efficiency, release kinetics, aerodynamic properties, and stability in artificial mucus (AM). The fate and cytotoxicity of hNPs upon aerosolization on a triple cell co-culture model (TCCC) mimicking human epithelial airway barrier were assessed. Finally, the effect of siRNA-loaded hNPs on ENaC protein expression at 72 hours was evaluated in A549 cells. Results: Optimized muco-inert hNPs encapsulating model siRNA with high efficiency were produced. The developed hNPs displayed a hydrodynamic diameter of ∼150 nm, a low polydispersity index, a negative ζ potential close to-25 mV, and a peculiar triphasic siRNA release lasting for 5 days, which slowed down in the presence of PEI. siRNA formulations showed optimal in vitro aerosol performance after delivery with a vibrating mesh nebulizer. Furthermore, small-angle X-ray scattering analyses highlighted an excellent stability upon incubation with AM, confirming the potential of hNPs for direct aerosolization on mucus-lined airways. Studies in TCCC confirmed that fluorescent hNPs are internalized inside airway epithelial cells and do not exert any cytotoxic or acute proinflammatory effect. Finally, a prolonged inhibition of ENaC protein expression was observed in A549 cells upon treatment with siRNA-loaded hNPs. Conclusions: Results demonstrate the great potential of hNPs as carriers for pulmonary delivery of siRNA, prompting toward investigation of their therapeutic effectiveness in severe lung diseases.

Hybrid Lipid/Polymer Nanoparticles for Pulmonary Delivery of siRNA : Development and Fate Upon In Vitro Deposition on the Human Epithelial Airway Barrier / I. D'Angelo, G. Costabile, E. Durantie, P. Brocca, V. Rondelli, A. Russo, G. Russo, A. Miro, F. Quaglia, A. Petri-Fink, B. Rothen-Rutishauser, F. Ungaro. - In: JOURNAL OF AEROSOL MEDICINE AND PULMONARY DRUG DELIVERY. - ISSN 1941-2711. - 31:3(2018 Jun), pp. 170-181. [10.1089/jamp.2017.1364]

Hybrid Lipid/Polymer Nanoparticles for Pulmonary Delivery of siRNA : Development and Fate Upon In Vitro Deposition on the Human Epithelial Airway Barrier

P. Brocca;V. Rondelli;
2018

Abstract

Background: Nowadays, the downregulation of genes involved in the pathogenesis of severe lung diseases through local siRNA delivery appears an interesting therapeutic approach. In this study, we propose novel hybrid lipid-polymer nanoparticles (hNPs) consisting of poly(lactic-co-glycolic) acid (PLGA) and dipalmitoyl phosphatidylcholine (DPPC) as siRNA inhalation system. Methods: A panel of DPPC/PLGA hNPs was prepared by emulsion/solvent diffusion and fully characterized. A combination of model siRNAs against the sodium transepithelial channel (ENaC) was entrapped in optimized hNPs comprising or not poly(ethylenimine) (PEI) as third component. siRNA-loaded hNPs were characterized for encapsulation efficiency, release kinetics, aerodynamic properties, and stability in artificial mucus (AM). The fate and cytotoxicity of hNPs upon aerosolization on a triple cell co-culture model (TCCC) mimicking human epithelial airway barrier were assessed. Finally, the effect of siRNA-loaded hNPs on ENaC protein expression at 72 hours was evaluated in A549 cells. Results: Optimized muco-inert hNPs encapsulating model siRNA with high efficiency were produced. The developed hNPs displayed a hydrodynamic diameter of ∼150 nm, a low polydispersity index, a negative ζ potential close to-25 mV, and a peculiar triphasic siRNA release lasting for 5 days, which slowed down in the presence of PEI. siRNA formulations showed optimal in vitro aerosol performance after delivery with a vibrating mesh nebulizer. Furthermore, small-angle X-ray scattering analyses highlighted an excellent stability upon incubation with AM, confirming the potential of hNPs for direct aerosolization on mucus-lined airways. Studies in TCCC confirmed that fluorescent hNPs are internalized inside airway epithelial cells and do not exert any cytotoxic or acute proinflammatory effect. Finally, a prolonged inhibition of ENaC protein expression was observed in A549 cells upon treatment with siRNA-loaded hNPs. Conclusions: Results demonstrate the great potential of hNPs as carriers for pulmonary delivery of siRNA, prompting toward investigation of their therapeutic effectiveness in severe lung diseases.
dipalmitoylphosphatidylcholine; inhalable nanoparticles; poly(ethylenimine); poly(lactic-co-glycolic) acid; siRNA; triple cell coculture
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
giu-2018
16-ott-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
JournalAerosolMedicine_HybridLipidPolymer_2017.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri
Manuscript_for green pub.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/557592
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 47
social impact