Overactivation of the glutamatergic synapse leading to maladaptive synaptic plasticity in the basal ganglia is a well-demonstrated process involved in the onset of L-DOPA-induced dyskinesia (LID). Changes in glutamate release are paralleled by compensatory modifications of the expression and/or synaptic localization of both ionotropic and metabotropic glutamate receptors (mGluRs). Accordingly, compounds targeting N-methyl-D-aspartate glutamate receptors (NMDARs) and specific subtypes of metabotropic glutamate receptors (mGluR4 and mGluR5) have been tested both in preclinical and clinical studies. At present, amantadine, a low-affinity non-competitive NMDAR antagonist, represents the only recommended add-on agent with a moderate anti-dyskinetic activity. The present review describes recent advances in basic research, preclinical and early clinical studies in the attempt of identifying innovative strategies for an accurate modulation of both pre- and postsynaptic glutamate receptors to reduce the severity of LID. Even if a complete understanding of LID molecular bases is still lacking, several compounds demonstrated an anti-dyskinetic activity in preclinical and early clinical studies. These results indicate that modulation of the glutamatergic system remains one of the most promising pharmacological strategies in the field.

Glutamatergic mechanisms in L-DOPA-induced dyskinesia and therapeutic implications / M. Mellone, F. Gardoni. - In: JOURNAL OF NEURAL TRANSMISSION. - ISSN 0300-9564. - 125:8(2018), pp. 1225-1236.

Glutamatergic mechanisms in L-DOPA-induced dyskinesia and therapeutic implications

M. Mellone;F. Gardoni
2018

Abstract

Overactivation of the glutamatergic synapse leading to maladaptive synaptic plasticity in the basal ganglia is a well-demonstrated process involved in the onset of L-DOPA-induced dyskinesia (LID). Changes in glutamate release are paralleled by compensatory modifications of the expression and/or synaptic localization of both ionotropic and metabotropic glutamate receptors (mGluRs). Accordingly, compounds targeting N-methyl-D-aspartate glutamate receptors (NMDARs) and specific subtypes of metabotropic glutamate receptors (mGluR4 and mGluR5) have been tested both in preclinical and clinical studies. At present, amantadine, a low-affinity non-competitive NMDAR antagonist, represents the only recommended add-on agent with a moderate anti-dyskinetic activity. The present review describes recent advances in basic research, preclinical and early clinical studies in the attempt of identifying innovative strategies for an accurate modulation of both pre- and postsynaptic glutamate receptors to reduce the severity of LID. Even if a complete understanding of LID molecular bases is still lacking, several compounds demonstrated an anti-dyskinetic activity in preclinical and early clinical studies. These results indicate that modulation of the glutamatergic system remains one of the most promising pharmacological strategies in the field.
Glutamatergic receptors; L-DOPA-induced dyskinesia; Pharmacological targets; Preclinical studies
Settore BIO/14 - Farmacologia
   Targeting early synaptic dysfunctions induced by alpha-synuclein as a novel therapeutic approach in Parkinson's disease
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2015FNWP34_003
2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
10.1007_s00702-018-1846-8.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 973.3 kB
Formato Adobe PDF
973.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/548158
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact