The elastic behavior and the structural evolution at high pressure of a natural Ca-laumontite and Ca-leonhardite, the partially dehydrated form of Ca-laumontite, have been investigated by in situ single-crystal synchrotron X-ray diffraction up to 2.7 GPa and 7.5 GPa, respectively, using a diamond anvil cell. Despite no phase transitions have been observed within the P-range investigated, an anomalous stiffening of the structure along the b crystallographic axis occurs at about 2.1 GPa in Ca-laumontite and 2.4 GPa in Ca-leonhardite. The isothermal bulk elastic parameters of Ca-laumontite, refined by a second order Birch–Murnaghan equation of state (BM-EoS) fit, are: V0 = 1393.9(6) Å3 and KV0 = 54.8(10) GPa; whereas the isothermal bulk elastic parameters of Ca-leonhardite, refined by a third order BM-EoS fit, are: V0 = 1348(1) Å3, KV0 = 36(1) GPa and KV’ = 2.4(3). The hydration process, at ambient P-T conditions, of Ca-leonhardite has also been studied by means of in-situ single crystal X-ray diffraction in several H2O-based mixtures. The results show that the hydration process is influenced by the fraction of H2O in the aqueous mixtures in which leonhardite is immersed, and an almost linear correlation between the occupancy of the crystallographic W1 site and the unit-cell volume has been found. The structure deformation mechanisms that govern the compression of Ca-laumontite and Ca-leonhardite at the atomic scale, as well as those related to the hydration process of Ca-leonhardite, are described.

Crystal-fluid interactions in laumontite / D. Comboni, G..D. Gatta, P. Lotti, M. Merlini, M. Hanfland. - In: MICROPOROUS AND MESOPOROUS MATERIALS. - ISSN 1387-1811. - 263(2018 Jun), pp. 86-95. [10.1016/j.micromeso.2017.12.003]

Crystal-fluid interactions in laumontite

D. Comboni;G..D. Gatta;P. Lotti
;
M. Merlini;
2018

Abstract

The elastic behavior and the structural evolution at high pressure of a natural Ca-laumontite and Ca-leonhardite, the partially dehydrated form of Ca-laumontite, have been investigated by in situ single-crystal synchrotron X-ray diffraction up to 2.7 GPa and 7.5 GPa, respectively, using a diamond anvil cell. Despite no phase transitions have been observed within the P-range investigated, an anomalous stiffening of the structure along the b crystallographic axis occurs at about 2.1 GPa in Ca-laumontite and 2.4 GPa in Ca-leonhardite. The isothermal bulk elastic parameters of Ca-laumontite, refined by a second order Birch–Murnaghan equation of state (BM-EoS) fit, are: V0 = 1393.9(6) Å3 and KV0 = 54.8(10) GPa; whereas the isothermal bulk elastic parameters of Ca-leonhardite, refined by a third order BM-EoS fit, are: V0 = 1348(1) Å3, KV0 = 36(1) GPa and KV’ = 2.4(3). The hydration process, at ambient P-T conditions, of Ca-leonhardite has also been studied by means of in-situ single crystal X-ray diffraction in several H2O-based mixtures. The results show that the hydration process is influenced by the fraction of H2O in the aqueous mixtures in which leonhardite is immersed, and an almost linear correlation between the occupancy of the crystallographic W1 site and the unit-cell volume has been found. The structure deformation mechanisms that govern the compression of Ca-laumontite and Ca-leonhardite at the atomic scale, as well as those related to the hydration process of Ca-leonhardite, are described.
High pressure; Laumontite; Leonhardite; Molecules intrusion; X-ray diffraction; Chemistry (all); Materials Science (all); Condensed Matter Physics; Mechanics of Materials
Settore GEO/09 - Georisorse Miner.Appl.Mineral.-Petrogr.per l'amb.e i Beni Cul
Settore GEO/06 - Mineralogia
giu-2018
dic-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
Laumontite_MMM.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 672.27 kB
Formato Adobe PDF
672.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Laumontite_manuscript_R1.pdf

Open Access dal 01/07/2020

Descrizione: Versione accettata dall'editore per la stampa
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 266.79 kB
Formato Adobe PDF
266.79 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/541716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact