Different lines of evidence indicate that both aberrant activation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt survival pathway and down-regulation of the death mediator ceramide play a critical role in the aggressive behavior, apoptosis resistance, and adverse clinical outcome of glioblastoma multiforme. Furthermore, the inhibition of the PI3K/Akt pathway and the up-regulation of ceramide have been found functional to the activity of many cytotoxic treatments against glioma cell lines and glioblastomas as well. A reciprocal control between PI3K/Akt and ceramide signaling in glioma cell survival/death is suggested by data demonstrating a protective role of PI3K/Akt on ceramide-induced cell death in glial cells. In this study we investigated the role of the PI3K/Akt pathway in the regulation of the ceramide metabolism in C6 glioma cells, a cell line in which the PI3K/Akt pathway is constitutively activated. Metabolic experiments performed with different radioactive metabolic precursors of sphingolipids and microscopy studies with fluorescent ceramides demonstrated that the chemical inhibition of PI3K and the transfection with a dominant negative Akt strongly inhibited ceramide utilization for the biosynthesis of complex sphingolipids by controlling the endoplasmic reticulum (ER) to Golgi vesicular transport of ceramide. These findings constitute the first evidence for a PI3K/Akt-dependent regulation of vesicle-mediated movements of ceramide in the ER-Golgi district. Moreover, the findings also suggest the activation of the PI3K/Akt pathway as crucial to coordinate the biosynthesis of membrane complex sphingolipids with cell proliferation and growth and/or to maintain low ceramide levels, especially as concerns those treatments that promote ceramide biosynthesis in the ER.

Phosphatidylinositol 3-Kinase/AKT pathway regulates the endoplasmic reticulum to Golgi traffic of ceramide in glioma cells : a link between lipid signaling pathways involved in the control of cell survival / P. Giussani, L. Brioschi, R. Bassi, L. Riboni, P. Viani. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 284:8(2009), pp. 5088-5096. [10.1074/jbc.M808934200]

Phosphatidylinositol 3-Kinase/AKT pathway regulates the endoplasmic reticulum to Golgi traffic of ceramide in glioma cells : a link between lipid signaling pathways involved in the control of cell survival

P. Giussani
Primo
;
L. Brioschi
Secondo
;
R. Bassi;L. Riboni
Penultimo
;
P. Viani
Ultimo
2009

Abstract

Different lines of evidence indicate that both aberrant activation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt survival pathway and down-regulation of the death mediator ceramide play a critical role in the aggressive behavior, apoptosis resistance, and adverse clinical outcome of glioblastoma multiforme. Furthermore, the inhibition of the PI3K/Akt pathway and the up-regulation of ceramide have been found functional to the activity of many cytotoxic treatments against glioma cell lines and glioblastomas as well. A reciprocal control between PI3K/Akt and ceramide signaling in glioma cell survival/death is suggested by data demonstrating a protective role of PI3K/Akt on ceramide-induced cell death in glial cells. In this study we investigated the role of the PI3K/Akt pathway in the regulation of the ceramide metabolism in C6 glioma cells, a cell line in which the PI3K/Akt pathway is constitutively activated. Metabolic experiments performed with different radioactive metabolic precursors of sphingolipids and microscopy studies with fluorescent ceramides demonstrated that the chemical inhibition of PI3K and the transfection with a dominant negative Akt strongly inhibited ceramide utilization for the biosynthesis of complex sphingolipids by controlling the endoplasmic reticulum (ER) to Golgi vesicular transport of ceramide. These findings constitute the first evidence for a PI3K/Akt-dependent regulation of vesicle-mediated movements of ceramide in the ER-Golgi district. Moreover, the findings also suggest the activation of the PI3K/Akt pathway as crucial to coordinate the biosynthesis of membrane complex sphingolipids with cell proliferation and growth and/or to maintain low ceramide levels, especially as concerns those treatments that promote ceramide biosynthesis in the ER.
cannabinoid-induced apoptosis; element-binding protein; glioblastoma-multiforme; clinical-outcomes; nervous-system; kinase-B; death; pten; inhibition; transport
Settore BIO/10 - Biochimica
2009
Article (author)
File in questo prodotto:
File Dimensione Formato  
J. Biol. Chem.-2009-Giussani-5088-96.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 711.44 kB
Formato Adobe PDF
711.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/51896
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 33
social impact