Novel systems based on colloidal magnetic nanocrystals (NCs), potentially useful as superparamagnetic (SP) contrast agents for magnetic resonance imaging (MRI) have been investigated. The NCs we have studied comprise organic-capped single-crystalline maghemite (γ-Fe2O3) cores possessing controlled sizes and shapes. We have comparatively examined spherical and tetrapod-like NCs, the latter being branched particles possessing four arms which depart out at tetrahedral angles from a central point. The as-synthesized NCs are passivated by hydrophobic surfactant molecules and thus are fully dispersible in nonpolar media only. The NCs have been made soluble in aqueous solution by applying a procedure based on the surface intercalation and coating with an amphiphilic polymer shell. NMR relaxivities R1 and R2 were compared with ENDOREM®, one of the standard commercial SP-MRI contrast agent. We found that the spherical NCs exhibit R1 and R2 relaxivities slightly lower than those of ENDOREM®, over the whole frequency range; on the contrary, tetrapods show relaxivities about one order of magnitude lower. The physical origin of such difference in relaxivities between tetrapod- and spheres-based nanostructures is under investigation and it is possibly related to different sources of the magnetic anisotropy.

Magnetic properties of novel superparamagnetic MRI contrast agents based on colloidal nanocrystals / M. Corti, A. Lascialfari, E. Micotti, A. Castellano, M. Donativi, A. Quarta, P.D. Cozzoli, L. Manna, T. Pellegrino, C. Sangregorio. - In: JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS. - ISSN 0304-8853. - 320:14(2008), pp. E320-E323.

Magnetic properties of novel superparamagnetic MRI contrast agents based on colloidal nanocrystals

A. Lascialfari
Secondo
;
2008

Abstract

Novel systems based on colloidal magnetic nanocrystals (NCs), potentially useful as superparamagnetic (SP) contrast agents for magnetic resonance imaging (MRI) have been investigated. The NCs we have studied comprise organic-capped single-crystalline maghemite (γ-Fe2O3) cores possessing controlled sizes and shapes. We have comparatively examined spherical and tetrapod-like NCs, the latter being branched particles possessing four arms which depart out at tetrahedral angles from a central point. The as-synthesized NCs are passivated by hydrophobic surfactant molecules and thus are fully dispersible in nonpolar media only. The NCs have been made soluble in aqueous solution by applying a procedure based on the surface intercalation and coating with an amphiphilic polymer shell. NMR relaxivities R1 and R2 were compared with ENDOREM®, one of the standard commercial SP-MRI contrast agent. We found that the spherical NCs exhibit R1 and R2 relaxivities slightly lower than those of ENDOREM®, over the whole frequency range; on the contrary, tetrapods show relaxivities about one order of magnitude lower. The physical origin of such difference in relaxivities between tetrapod- and spheres-based nanostructures is under investigation and it is possibly related to different sources of the magnetic anisotropy.
Colloidal nanocrystal; Contrast agent; Magnetic properties and NMR; Magnetic resonance imaging
Settore FIS/01 - Fisica Sperimentale
2008
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/51881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 39
social impact