Among the incomparably diverse group of insects no cases of central nervous system (CNS) preservation have been so far described in compression fossils. A third of the fossil insects collected from a 240-239 million year old (Ma) level at Monte San Giorgio UNESCO World Heritage (Switzerland-Italy) underwent phosphatization, resulting in the extraordinary preservation of soft tissues. Here we describe Gigamachilis triassicus gen. et sp. nov. (Archaeognatha: Machiloidea: Machilidae) that, with an estimated total length of ∼80 millimeters, represents the largest apterygote insect ever recorded. The holotype preserves: (i) components of the CNS represented by four abdominal ganglia, optic lobes with neuropils and compound retina; (ii) muscular bundles. Moreover, G. triassicus, possessing morphological features that prompt its assignment to the extant archaeognathan ingroup Machilidae, places the origin of modern lineages to Middle Triassic. Interestingly, at Monte San Giorgio, in the same stratigraphic unit the modern morphology of G. triassicus co-occurs with the ancient one represented by Dasyleptus triassicus (Archaeognatha: †Monura). Comparing these two types of body organization we provide a new reconstruction of the possible character evolution leading towards modern archaeognathan forms, suggesting the acquisition of novel features in a lineage of apterygote insects during the Permian or the Lower Triassic.

Central nervous system and muscular bundles preserved in a 240 million year old giant bristletail (Archaeognatha: Machilidae) / M. Montagna, J.T. Haug, L. Strada, C. Haug, M. Felber, A. Tintori. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 7(2017 Apr 07), p. 46016.46016.

Central nervous system and muscular bundles preserved in a 240 million year old giant bristletail (Archaeognatha: Machilidae)

M. Montagna
;
A. Tintori
Ultimo
2017

Abstract

Among the incomparably diverse group of insects no cases of central nervous system (CNS) preservation have been so far described in compression fossils. A third of the fossil insects collected from a 240-239 million year old (Ma) level at Monte San Giorgio UNESCO World Heritage (Switzerland-Italy) underwent phosphatization, resulting in the extraordinary preservation of soft tissues. Here we describe Gigamachilis triassicus gen. et sp. nov. (Archaeognatha: Machiloidea: Machilidae) that, with an estimated total length of ∼80 millimeters, represents the largest apterygote insect ever recorded. The holotype preserves: (i) components of the CNS represented by four abdominal ganglia, optic lobes with neuropils and compound retina; (ii) muscular bundles. Moreover, G. triassicus, possessing morphological features that prompt its assignment to the extant archaeognathan ingroup Machilidae, places the origin of modern lineages to Middle Triassic. Interestingly, at Monte San Giorgio, in the same stratigraphic unit the modern morphology of G. triassicus co-occurs with the ancient one represented by Dasyleptus triassicus (Archaeognatha: †Monura). Comparing these two types of body organization we provide a new reconstruction of the possible character evolution leading towards modern archaeognathan forms, suggesting the acquisition of novel features in a lineage of apterygote insects during the Permian or the Lower Triassic.
Entomology, Insect Evolution, Palaeontology
Settore AGR/11 - Entomologia Generale e Applicata
Settore BIO/05 - Zoologia
Settore GEO/01 - Paleontologia e Paleoecologia
7-apr-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
srep46016.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/491030
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact