Animals respond to chemical stress with an array of gene families and pathways termed “chemical defensome”. In arthropods, despite many defensome genes have been detected, how their activation is arranged during toxic exposure remains poorly understood. Here, we sequenced the transcriptome of Anopheles stephensi larvae exposed for six, 24 and 48 hours to the LD50 dose of the insecticide permethrin to monitor transcriptional changes of defensome genes across time. A total of 177 genes involved in insecticide defense were differentially expressed (DE) in at least one time-point, including genes encoding for Phase 0, I, II, III and antioxidant enzymes and for Heat Shock and Cuticular Proteins. Three major patterns emerged throughout time. First, most of DE genes were down-regulated at all time-points, suggesting a reallocation of energetic resources during insecticide stress. Second, single genes and clusters of genes turn off and on from six to 48 hours of treatment, showing a modulated response across time. Third, the number of up-regulated genes peaked at six hours and then decreased during exposure. Our results give a first picture of how defensome gene families respond against toxicants and provide a valuable resource for understanding how defensome genes work together during insecticide stress.

The choreography of the chemical defensome response to insecticide stress : insights into the Anopheles stephensi transcriptome using RNA-Seq / L. De Marco, D. Sassera, S. Epis, V. Mastrantonio, M. Ferrari, I. Ricci, F. Comandatore, C. Bandi, D. Porretta, S. Urbanelli. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 7(2017 Jan 23). [10.1038/srep41312]

The choreography of the chemical defensome response to insecticide stress : insights into the Anopheles stephensi transcriptome using RNA-Seq

D. Sassera
Secondo
;
S. Epis;M. Ferrari;F. Comandatore;C. Bandi;
2017

Abstract

Animals respond to chemical stress with an array of gene families and pathways termed “chemical defensome”. In arthropods, despite many defensome genes have been detected, how their activation is arranged during toxic exposure remains poorly understood. Here, we sequenced the transcriptome of Anopheles stephensi larvae exposed for six, 24 and 48 hours to the LD50 dose of the insecticide permethrin to monitor transcriptional changes of defensome genes across time. A total of 177 genes involved in insecticide defense were differentially expressed (DE) in at least one time-point, including genes encoding for Phase 0, I, II, III and antioxidant enzymes and for Heat Shock and Cuticular Proteins. Three major patterns emerged throughout time. First, most of DE genes were down-regulated at all time-points, suggesting a reallocation of energetic resources during insecticide stress. Second, single genes and clusters of genes turn off and on from six to 48 hours of treatment, showing a modulated response across time. Third, the number of up-regulated genes peaked at six hours and then decreased during exposure. Our results give a first picture of how defensome gene families respond against toxicants and provide a valuable resource for understanding how defensome genes work together during insecticide stress.
Settore BIO/07 - Ecologia
Settore VET/06 - Parassitologia e Malattie Parassitarie degli Animali
23-gen-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
ChoreographyChemical_ScientificReports_2017.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/485707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 35
social impact