This paper investigates the ceramide composition of the psoriatic scale compared with that of normal human SC. A method was optimalized, based on TLC separation followed by densitometry, allowing the provision of good resolution and quantification of ceramide fractions from both normal and pathological specimens. Seven ceramide fractions were isolated and submitted to compositional analysis. The obtained results suggested a revisitation of previous ceramide designation. Therefore a simple classification is suggested, based on grouping ceramides carrying structural similarities under common codes. According to these rules, ceramides were grouped into five classes designated as: (1) Cer[EOS], which contains ester-linked fatty acids, omega-OH fatty acids and sphingosines; (2) Cer[NS], which contains non-OH fatty acids and sphingosines; (3) Cer[NP], which contains non-OH fatty acids and phytosphingosines; (4) Cer[AS], which contains alpha-OH fatty acids and sphingosines; (5) Cer[AP], which contains alpha-OH fatty acids and phytosphingosines. Analysis of ceramides from the psoriatic scale, compared to those from normal human SC, resulted in an impairment of the Cer[EOS] content as well as of the ceramides containing phytosphingosine, with concurrent increase in ceramides containing sphingosine, being the total amount maintained identical. Since one of the suggested pathways for phytosphingosine biosynthesis involves the water addition to the corresponding sphingosine double bond, we can speculate that the observed alteration is due to a deranged water bioavailability, associated with psoriasis.

Ceramide composition of the psoriatic scale / S. Motta, M. Monti, S. Sesana, R. Caputo, S. Carelli, R. Ghidoni. - In: BIOCHIMICA ET BIOPHYSICA ACTA. - ISSN 0006-3002. - 1182:2(1993 Sep 08), pp. 147-151.

Ceramide composition of the psoriatic scale

S. Motta
Primo
;
M. Monti
Secondo
;
R. Caputo;S. Carelli
Penultimo
;
R. Ghidoni
1993

Abstract

This paper investigates the ceramide composition of the psoriatic scale compared with that of normal human SC. A method was optimalized, based on TLC separation followed by densitometry, allowing the provision of good resolution and quantification of ceramide fractions from both normal and pathological specimens. Seven ceramide fractions were isolated and submitted to compositional analysis. The obtained results suggested a revisitation of previous ceramide designation. Therefore a simple classification is suggested, based on grouping ceramides carrying structural similarities under common codes. According to these rules, ceramides were grouped into five classes designated as: (1) Cer[EOS], which contains ester-linked fatty acids, omega-OH fatty acids and sphingosines; (2) Cer[NS], which contains non-OH fatty acids and sphingosines; (3) Cer[NP], which contains non-OH fatty acids and phytosphingosines; (4) Cer[AS], which contains alpha-OH fatty acids and sphingosines; (5) Cer[AP], which contains alpha-OH fatty acids and phytosphingosines. Analysis of ceramides from the psoriatic scale, compared to those from normal human SC, resulted in an impairment of the Cer[EOS] content as well as of the ceramides containing phytosphingosine, with concurrent increase in ceramides containing sphingosine, being the total amount maintained identical. Since one of the suggested pathways for phytosphingosine biosynthesis involves the water addition to the corresponding sphingosine double bond, we can speculate that the observed alteration is due to a deranged water bioavailability, associated with psoriasis.
Skin; Psoriasis; Humans; Fatty Acids; Ceramides; Esters; Male; Female
Settore MED/35 - Malattie Cutanee e Veneree
8-set-1993
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/484130
Citazioni
  • ???jsp.display-item.citation.pmc??? 69
  • Scopus 406
  • ???jsp.display-item.citation.isi??? 349
social impact