Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.

Computational modeling of single neuron extracellular electric potentials and network local field potentials using LFPsim / H. Parasuram, B. Nair, E. D’Angelo, M. Hines, G. Naldi, S. Diwakar. - In: FRONTIERS IN COMPUTATIONAL NEUROSCIENCE. - ISSN 1662-5188. - 10:June(2016). [10.3389/fncom.2016.00065]

Computational modeling of single neuron extracellular electric potentials and network local field potentials using LFPsim

G. Naldi
Penultimo
;
2016

Abstract

Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.
cerebellum; circuit; computational neuroscience; local field potential; neocortex; neuron; simulation; neuroscience (miscellaneous); cellular and molecular neuroscience
Settore MAT/08 - Analisi Numerica
2016
Centro di Ricerca Interdisciplinare su Modellistica Matematica, Analisi Statistica e Simulazione Computazionale per la Innovazione Scientifica e Tecnologica ADAMSS
Article (author)
File in questo prodotto:
File Dimensione Formato  
fncom-10-00065.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 6.19 MB
Formato Adobe PDF
6.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/462969
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 42
social impact