Motor neuron diseases (MNDs) are neuromuscular disorders affecting rather exclusively upper motor neurons (UMNs) and/or lower motor neurons (LMNs). The clinical phenotype is characterized by muscular weakness and atrophy leading to paralysis and almost invariably death due to respiratory failure. Adult MNDs include sporadic and familial amyotrophic lateral sclerosis (sALS-fALS), while the most common infantile MND is represented by spinal muscular atrophy (SMA). No effective treatment is ccurrently available for MNDs, as for the vast majority of neurodegenerative disorders, and cures are limited to supportive care and symptom relief. The lack of a deep understanding of MND pathogenesis accounts for the difficulties in finding a cure, together with the scarcity of reliable in vitro models. Recent progresses in stem cell field, in particular in the generation of induced Pluripotent Stem Cells (iPSCs) has made possible for the first time obtaining substantial amounts of human cells to recapitulate in vitro some of the key pathogenetic processes underlying MNDs. In the present review, recently published studies involving the use of iPSCs to unravel aspects of ALS and SMA pathogenesis are discussed with an overview of their implications in the process of finding a cure for these still orphan disorders.

iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development / I. Faravelli, E. Frattini, A. Ramirez, G. Stuppia, M. Nizzardo, S. Corti. - In: JOURNAL OF CLINICAL MEDICINE. - ISSN 2077-0383. - 3:4(2014 Oct 17), pp. 1124-1145. [10.3390/jcm3041124]

iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development

I. Faravelli
Primo
;
E. Frattini;A. Ramirez;M. Nizzardo
Penultimo
;
S. Corti
Ultimo
2014

Abstract

Motor neuron diseases (MNDs) are neuromuscular disorders affecting rather exclusively upper motor neurons (UMNs) and/or lower motor neurons (LMNs). The clinical phenotype is characterized by muscular weakness and atrophy leading to paralysis and almost invariably death due to respiratory failure. Adult MNDs include sporadic and familial amyotrophic lateral sclerosis (sALS-fALS), while the most common infantile MND is represented by spinal muscular atrophy (SMA). No effective treatment is ccurrently available for MNDs, as for the vast majority of neurodegenerative disorders, and cures are limited to supportive care and symptom relief. The lack of a deep understanding of MND pathogenesis accounts for the difficulties in finding a cure, together with the scarcity of reliable in vitro models. Recent progresses in stem cell field, in particular in the generation of induced Pluripotent Stem Cells (iPSCs) has made possible for the first time obtaining substantial amounts of human cells to recapitulate in vitro some of the key pathogenetic processes underlying MNDs. In the present review, recently published studies involving the use of iPSCs to unravel aspects of ALS and SMA pathogenesis are discussed with an overview of their implications in the process of finding a cure for these still orphan disorders.
amyotrophic lateral sclerosis; disease modeling; induced pluripotent stem cells; spinal muscular atrophy
Settore MED/26 - Neurologia
17-ott-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
FaravelliCorti_JournalClinicalMedicine_BasedModels_2013.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/425421
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact