Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the degeneration of the motor neurons. We tested whether treatment of superoxide dismutase (SOD1)-G93A transgenic mouse, a model of ALS, with a neural stem cell subpopulation double positive for Lewis X and the chemokine receptor CXCR4 (LeX+CXCR4+) can modify the disease's progression. In vitro, after exposure to morphogenetic stimuli, LeX+CXCR4+ cells generate cholinergic motor neuron-like cells upon differentiation. LeX+CXCR4+ cells deriving from mice expressing Green Fluorescent Protein in all tissues or only in motor neurons, after a period of priming in vitro, were grafted into spinal cord of SOD1-G93A mice. Transplanted transgenic mice exhibited a delayed disease onset and progression, and survived significantly longer than non-treated animals by 23 days. Examination of the spinal cord revealed integration of donor-derived cells that differentiated mostly in neurons and in a lower proportion in motor neuron-like cells. Quantification of motor neurons of the spinal cord suggests a significant neuroprotection by LeX+CXCR4+ cells. Both VEGF- and IGF1-dependent pathways were significantly modulated in transplanted animals compared to controls, suggesting a role of these neurotrophins in MN protection. Our results support the therapeutic potential of neural stem cell fractions through both neurogenesis and growth factors release in motor neuron disorders.

Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model / S. Corti, F. Locatelli, D. Papadimitriou, R. Del Bo, M. Nizzardo, M. Nardini, C. Donadoni, S. Salani, F. Fortunato, S. Strazzer, N. Bresolin, G.P. Comi. - In: BRAIN. - ISSN 0006-8950. - 130:5(2007), pp. 1289-1305. [10.1093/brain/awm043]

Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model

S. Corti
Primo
;
F. Locatelli
Secondo
;
D. Papadimitriou;R. Del Bo;F. Fortunato;N. Bresolin
Penultimo
;
G.P. Comi
2007

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the degeneration of the motor neurons. We tested whether treatment of superoxide dismutase (SOD1)-G93A transgenic mouse, a model of ALS, with a neural stem cell subpopulation double positive for Lewis X and the chemokine receptor CXCR4 (LeX+CXCR4+) can modify the disease's progression. In vitro, after exposure to morphogenetic stimuli, LeX+CXCR4+ cells generate cholinergic motor neuron-like cells upon differentiation. LeX+CXCR4+ cells deriving from mice expressing Green Fluorescent Protein in all tissues or only in motor neurons, after a period of priming in vitro, were grafted into spinal cord of SOD1-G93A mice. Transplanted transgenic mice exhibited a delayed disease onset and progression, and survived significantly longer than non-treated animals by 23 days. Examination of the spinal cord revealed integration of donor-derived cells that differentiated mostly in neurons and in a lower proportion in motor neuron-like cells. Quantification of motor neurons of the spinal cord suggests a significant neuroprotection by LeX+CXCR4+ cells. Both VEGF- and IGF1-dependent pathways were significantly modulated in transplanted animals compared to controls, suggesting a role of these neurotrophins in MN protection. Our results support the therapeutic potential of neural stem cell fractions through both neurogenesis and growth factors release in motor neuron disorders.
neural stem cell; transplantation; motor neuron; amyotrophic lateral sclerosis
Settore MED/26 - Neurologia
2007
Article (author)
File in questo prodotto:
File Dimensione Formato  
1289.full.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/42123
Citazioni
  • ???jsp.display-item.citation.pmc??? 47
  • Scopus 118
  • ???jsp.display-item.citation.isi??? 111
social impact