1. Newborn rabbit sino-atrial node (SAN) myocytes were recently found to express a tetrodotoxin (TTX)-sensitive Na+ current. We now report that the dose-response relation indicates that this SAN Na+ channel has unusually high TTX sensitivity, with half-maximal inhibition (26 +/- 5 nM) which is more typical of neuronal than cardiac tissue. 2. Additional characterization used mu-conotoxin GIIIA and Cd2+ as relatively selective blockers of the skeletal and cardiac isoforms, respectively. mu-Conotoxin GIIIA had no effect on the current recorded from SAN myocytes, but the Cd2+ sensitivity was unexpectedly high for a neuronal isoform (half-maximal inhibition = 185 +/- 8 microM). 3. Analysis of the time constant of inactivation did not reveal evidence of multiple inactivation processes, with the data well fitted by a single, relatively rapid exponential (inactivation time constant = 0.58 +/- 0.03 ms at 0 mV). 4. In situ hybridization with anti-sense cDNA probes was used to test for expression of neuronal type I, II and III Na+ channel isoforms. Myocardial cells in newborn SAN tissue exhibited clear hybridization to the type I, but not the type II or III probes. No hybridization was observed in adult SAN tissue with any of the three probes. 5. It is concluded that the newborn SAN expresses a neuronal type I-like Na+ channel isoform, and that this probably accounts for the unusual characteristic of high sensitivity to both TTX and Cd2+.

The newborn rabbit sino-atrial node expresses a neuronal type I-like Na+channel / M. Baruscotti, R.Westenbroek, W.A. Catterall, D. DiFrancesco, R.B. Robinson. - In: THE JOURNAL OF PHYSIOLOGY. - ISSN 0022-3751. - 498:3(1997), pp. 641-648.

The newborn rabbit sino-atrial node expresses a neuronal type I-like Na+channel

M. Baruscotti
Primo
;
D. DiFrancesco
Penultimo
;
1997

Abstract

1. Newborn rabbit sino-atrial node (SAN) myocytes were recently found to express a tetrodotoxin (TTX)-sensitive Na+ current. We now report that the dose-response relation indicates that this SAN Na+ channel has unusually high TTX sensitivity, with half-maximal inhibition (26 +/- 5 nM) which is more typical of neuronal than cardiac tissue. 2. Additional characterization used mu-conotoxin GIIIA and Cd2+ as relatively selective blockers of the skeletal and cardiac isoforms, respectively. mu-Conotoxin GIIIA had no effect on the current recorded from SAN myocytes, but the Cd2+ sensitivity was unexpectedly high for a neuronal isoform (half-maximal inhibition = 185 +/- 8 microM). 3. Analysis of the time constant of inactivation did not reveal evidence of multiple inactivation processes, with the data well fitted by a single, relatively rapid exponential (inactivation time constant = 0.58 +/- 0.03 ms at 0 mV). 4. In situ hybridization with anti-sense cDNA probes was used to test for expression of neuronal type I, II and III Na+ channel isoforms. Myocardial cells in newborn SAN tissue exhibited clear hybridization to the type I, but not the type II or III probes. No hybridization was observed in adult SAN tissue with any of the three probes. 5. It is concluded that the newborn SAN expresses a neuronal type I-like Na+ channel isoform, and that this probably accounts for the unusual characteristic of high sensitivity to both TTX and Cd2+.
Settore BIO/09 - Fisiologia
1997
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/40602
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 44
social impact