Kcv is a K+-selective channel encoded by the Paramecium bursaria Chlorella virus 1 (PBVC-1). Expression of this protein, so far the smallest known functional K+ channel, in Xenopus oocytes reveals an instantaneous and a time-dependent component during voltage-clamp steps. These two components have an identical sensitivity to the inhibitor amantadine, implying that they reflect distinct kinetic features of the same channel. About 70% of the channels are always open; at hyperpolarizing voltages the time-dependent channels (30%) open in a voltage-dependent manner reaching half-maximal activation at about ?70 mV. At both extreme positive and negative voltages the open-channel conductance decreases in a voltage-dependent manner. To examine the mechanism underlying the voltage-dependence of Kcv we neutralized the two charged amino acids in the lipophilic N-terminus. However, this double mutation had no effect on the voltage-dependence of the channel, ruling against the possibility that these charged amino acids represent a membrane-embedded voltage sensor. We have considered whether a block by external divalent cations is involved in the voltage-dependence of the channel. The Kcv current was increased about 4-fold on reduction of external Ca2+ concentration by a factor of ten. This pronounced increase in current was observed on lowering Ca2+ but not Mg2+ and was voltage-independent. These data indicate a Ca2+-selective, but voltage-independent mechanism for regulation of channel conductance.

Voltage-dependence of virus-encoded miniature K+ channel Kcv / S. Gazzarrini, J.L. Van Etten, D. DiFrancesco, G. Thiel, A. Moroni. - In: THE JOURNAL OF MEMBRANE BIOLOGY. - ISSN 0022-2631. - 187:1(2002), pp. 15-25.

Voltage-dependence of virus-encoded miniature K+ channel Kcv

S. Gazzarrini
Primo
;
D. DiFrancesco;A. Moroni
Ultimo
2002

Abstract

Kcv is a K+-selective channel encoded by the Paramecium bursaria Chlorella virus 1 (PBVC-1). Expression of this protein, so far the smallest known functional K+ channel, in Xenopus oocytes reveals an instantaneous and a time-dependent component during voltage-clamp steps. These two components have an identical sensitivity to the inhibitor amantadine, implying that they reflect distinct kinetic features of the same channel. About 70% of the channels are always open; at hyperpolarizing voltages the time-dependent channels (30%) open in a voltage-dependent manner reaching half-maximal activation at about ?70 mV. At both extreme positive and negative voltages the open-channel conductance decreases in a voltage-dependent manner. To examine the mechanism underlying the voltage-dependence of Kcv we neutralized the two charged amino acids in the lipophilic N-terminus. However, this double mutation had no effect on the voltage-dependence of the channel, ruling against the possibility that these charged amino acids represent a membrane-embedded voltage sensor. We have considered whether a block by external divalent cations is involved in the voltage-dependence of the channel. The Kcv current was increased about 4-fold on reduction of external Ca2+ concentration by a factor of ten. This pronounced increase in current was observed on lowering Ca2+ but not Mg2+ and was voltage-independent. These data indicate a Ca2+-selective, but voltage-independent mechanism for regulation of channel conductance.
Ca2+ block; K+ channel; Kcv; PBCV-1; Voltage-dependence
Settore BIO/04 - Fisiologia Vegetale
Settore BIO/09 - Fisiologia
2002
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/39759
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact