In this paper, a straightforward method based on elastic light scattering is shown to provide a sensitive and reliable tool for the quantitative determination of protein-ligand interactions that occur at the surface of suitably designed core-shell nanoparticles. The assay makes use of monodisperse nanocolloids that have minimal optical contrast with the aqueous environment. By properly coating the particles with avidin and oligo(ethylene glycol)-based amphiphiles, we developed a hybrid system that combines the availability of standard ligands with the necessary bioinvisibility towards the accidental adsorption of nonspecific macromolecules. This probe was employed to detect interactions between different kinds of biotinylated proteins, and it revealed high specificity and affinities in the low nanomolar range. In particular, we obtained an efficient avidin anchorage of biotinylated protein A on the surface of the nanoparticles, which we exploited as a functional probe for the rapid, quantitative, picomolar detection of human IgG antibodies. Overall, these light-scattering-based nanosensors appear as a simple and highly informative tool for proteomics studies.

Avidin decorated core–shell nanoparticles for biorecognition studies by elastic light scattering / D. Prosperi, C. Morasso, P. Tortora, D. Monti, T. Bellini. - In: CHEMBIOCHEM. - ISSN 1439-4227. - 8:9(2007 Jun 18), pp. 1021-1028.

Avidin decorated core–shell nanoparticles for biorecognition studies by elastic light scattering

T. Bellini
Ultimo
2007

Abstract

In this paper, a straightforward method based on elastic light scattering is shown to provide a sensitive and reliable tool for the quantitative determination of protein-ligand interactions that occur at the surface of suitably designed core-shell nanoparticles. The assay makes use of monodisperse nanocolloids that have minimal optical contrast with the aqueous environment. By properly coating the particles with avidin and oligo(ethylene glycol)-based amphiphiles, we developed a hybrid system that combines the availability of standard ligands with the necessary bioinvisibility towards the accidental adsorption of nonspecific macromolecules. This probe was employed to detect interactions between different kinds of biotinylated proteins, and it revealed high specificity and affinities in the low nanomolar range. In particular, we obtained an efficient avidin anchorage of biotinylated protein A on the surface of the nanoparticles, which we exploited as a functional probe for the rapid, quantitative, picomolar detection of human IgG antibodies. Overall, these light-scattering-based nanosensors appear as a simple and highly informative tool for proteomics studies.
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
18-giu-2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/35220
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact