The evolution of planktic foraminifera in the Paleocene–Eocene time interval is characterized by a high rate of diversification after the major extinction event observed at the Cretaceous/Paleogene boundary. An accelerated speciation rate resulted in the appearance of several new genera. Phylogenetic relationships among many of genera are still poorly understood. This study investigates the origin and phylogeny of the genus Igorina, which is characterized by a thick, nonspinose and incrusted wall. Igorina appears in Subzone P3a (early late Paleocene) and disappears in Zone P11 (middle Eocene). To date, nine species have been assigned to the genus Igorina (I. pusilla, I. trichotrocha, I. tadjikistanensis, I. convexa, I. albeari, I. laevigata, I. lodoensis, I. broedermanni, and I. anapetes) based on both wall texture and morphologic similarities. However, the taxonomic identification at species level is affected by several problems, mainly those resulting from poor descriptions and illustrations of the primary type specimens of several species. This study reconstructs the phylogeny and evolution of the igorinids through cladistic analysis by applying the method of parsimony. Phylogenetic relationships of the species assigned to Igorina are determined through stratocladistic analysis by using a data matrix of 23 taxa (including key species of Acarinina), 31 morphological characters (unordered), and a stratigraphic character (ordered) mapping the first occurrence of the taxa under investigation. The matrix (Appendix 1) was processed with PAUP* 4.0b10 software by using the heuristic search option to discover the most parsimonious trees. Results suggest that I. pusilla is the first representative of the Igorina lineage, and it is followed by I. laevigata, I. convexa, and I. albeari. Morphotypes of uncertain taxonomic identification have been coded and analyzed separately as morphotypes A–F to determine their ancestor-descendant relationships and to evaluate their validity as discrete species. As the result of our analysis, two new species are formally described as I. praecarinata (= morphotype A) and I. paraspiralis (= morphotypes C, E, and F). Finally, our analysis provides evidence that I. lodoensis, I. broedermanni, and I. anapetes are more closely related to Acarinina than to Igorina and clearly belong to a different lineage.

Phylogenetic relationships and evolutionary history of the Early Paleogene genus Igorina through parsimony analysis / D.M. Soldan, M.R. Petrizzo, I. Premoli Silva, A. Cau. - In: JOURNAL OF FORAMINIFERAL RESEARCH. - ISSN 0096-1191. - 41:3(2011), pp. 260-284. [10.2113/gsjfr.41.3.260]

Phylogenetic relationships and evolutionary history of the Early Paleogene genus Igorina through parsimony analysis

D.M. Soldan;M.R. Petrizzo;I. Premoli Silva;
2011

Abstract

The evolution of planktic foraminifera in the Paleocene–Eocene time interval is characterized by a high rate of diversification after the major extinction event observed at the Cretaceous/Paleogene boundary. An accelerated speciation rate resulted in the appearance of several new genera. Phylogenetic relationships among many of genera are still poorly understood. This study investigates the origin and phylogeny of the genus Igorina, which is characterized by a thick, nonspinose and incrusted wall. Igorina appears in Subzone P3a (early late Paleocene) and disappears in Zone P11 (middle Eocene). To date, nine species have been assigned to the genus Igorina (I. pusilla, I. trichotrocha, I. tadjikistanensis, I. convexa, I. albeari, I. laevigata, I. lodoensis, I. broedermanni, and I. anapetes) based on both wall texture and morphologic similarities. However, the taxonomic identification at species level is affected by several problems, mainly those resulting from poor descriptions and illustrations of the primary type specimens of several species. This study reconstructs the phylogeny and evolution of the igorinids through cladistic analysis by applying the method of parsimony. Phylogenetic relationships of the species assigned to Igorina are determined through stratocladistic analysis by using a data matrix of 23 taxa (including key species of Acarinina), 31 morphological characters (unordered), and a stratigraphic character (ordered) mapping the first occurrence of the taxa under investigation. The matrix (Appendix 1) was processed with PAUP* 4.0b10 software by using the heuristic search option to discover the most parsimonious trees. Results suggest that I. pusilla is the first representative of the Igorina lineage, and it is followed by I. laevigata, I. convexa, and I. albeari. Morphotypes of uncertain taxonomic identification have been coded and analyzed separately as morphotypes A–F to determine their ancestor-descendant relationships and to evaluate their validity as discrete species. As the result of our analysis, two new species are formally described as I. praecarinata (= morphotype A) and I. paraspiralis (= morphotypes C, E, and F). Finally, our analysis provides evidence that I. lodoensis, I. broedermanni, and I. anapetes are more closely related to Acarinina than to Igorina and clearly belong to a different lineage.
Settore GEO/01 - Paleontologia e Paleoecologia
2011
Article (author)
File in questo prodotto:
File Dimensione Formato  
Phylogenetica_Petrizzo_2011.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 8.52 MB
Formato Adobe PDF
8.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/299649
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact