When expressed in Xenopus oocytes KAAT1 increases tenfold the transport of L-leucine. Substitution of NaCl with 100 mM LiCl, RbCl or KCl allows a reduced but significant activation of L-leucine uptakes. Chloride-dependence is not strict since other pseudo-halide anions such as thyocyanate are accepted. KAAT1 is highly sensitive to pH. It can transport L-leucine at pH 5.5 and 8, but the maximum uptake has been observed at pH 10, near to the physiological pH value, when amino and carboxylic groups are both deprotonated. The pH value mainly influences the V(max) in Na+ activation curves and L-leucine kinetics. The kinetic parameters are K(mNa) = 4.6 ± 2 mM, V(maxNa) = 14.8 ± 1.7 pmol/oocyte/5 min for pH 8.0 and K(mNa) = 2.8 ± 0.7 mM, V(maxNa) = 31.3 ± 1.9 pmol/oocyte/5 min for pH 10.0. The kinetic parameters of L-leucine uptake are: K(m) = 120.4 ± 24.2 μM, V(max) = 23.2 ± 1.4 pmol/oocyte/5 min at pH 8.0 and K(m) = 81.3 ± 24.2 μM, V(max) = 65.6 ± 3.9 pmol/oocyte/5 min at pH 10.0. On the basis of inhibition experiments, the structural features required for KAAT1 substrates are: (i) a carboxylic group, (ii) an unsubstituted α-amino group, (iii) the side chain is unnecessary, if present it should be uncharged regardless of length and ramification.

Substrate selectivity and pH dependence of KAAT1 expressed in Xenopus laevis oocytes / S. Vincenti, M. Castagna, A. Peres, V. F. Sacchi. - In: THE JOURNAL OF MEMBRANE BIOLOGY. - ISSN 0022-2631. - 174:3(2000), pp. 213-224.

Substrate selectivity and pH dependence of KAAT1 expressed in Xenopus laevis oocytes

M. Castagna
Secondo
;
V. F. Sacchi
Ultimo
2000

Abstract

When expressed in Xenopus oocytes KAAT1 increases tenfold the transport of L-leucine. Substitution of NaCl with 100 mM LiCl, RbCl or KCl allows a reduced but significant activation of L-leucine uptakes. Chloride-dependence is not strict since other pseudo-halide anions such as thyocyanate are accepted. KAAT1 is highly sensitive to pH. It can transport L-leucine at pH 5.5 and 8, but the maximum uptake has been observed at pH 10, near to the physiological pH value, when amino and carboxylic groups are both deprotonated. The pH value mainly influences the V(max) in Na+ activation curves and L-leucine kinetics. The kinetic parameters are K(mNa) = 4.6 ± 2 mM, V(maxNa) = 14.8 ± 1.7 pmol/oocyte/5 min for pH 8.0 and K(mNa) = 2.8 ± 0.7 mM, V(maxNa) = 31.3 ± 1.9 pmol/oocyte/5 min for pH 10.0. The kinetic parameters of L-leucine uptake are: K(m) = 120.4 ± 24.2 μM, V(max) = 23.2 ± 1.4 pmol/oocyte/5 min at pH 8.0 and K(m) = 81.3 ± 24.2 μM, V(max) = 65.6 ± 3.9 pmol/oocyte/5 min at pH 10.0. On the basis of inhibition experiments, the structural features required for KAAT1 substrates are: (i) a carboxylic group, (ii) an unsubstituted α-amino group, (iii) the side chain is unnecessary, if present it should be uncharged regardless of length and ramification.
Amino acid transport; Cotransport; KAAT1; Inhibition; Xenopus laevis oocyte
Settore BIO/09 - Fisiologia
2000
http://www.springerlink.com/content/5ygflmnkuw93mtx3/
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/29162
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact