BACKGROUND: Mitochondria, as recently suggested, might be involved in iron sensing and signalling pathways in plant cells. For a better understanding of the role of these organelles in mediating the Fe deficiency responses in plant cells, it is crucial to provide a full overview of their modifications occurring under Fe-limited conditions. The aim of this work is to characterize the ultrastructural as well as the biochemical changes occurring in leaf mitochondria of cucumber (Cucumis sativus L.) plants grown under Fe deficiency. METHODOLOGY/RESULTS: Mitochondrial ultrastructure was investigated by transmission electron microscopy (TEM) and electron tomography techniques, which allowed a three-dimensional (3D) reconstruction of cellular structures. These analyses reveal that mitochondria isolated from cucumber leaves appear in the cristae junction model conformation and that Fe deficiency strongly alters both the number and the volume of cristae. The ultrastructural changes observed in mitochondria isolated from Fe-deficient leaves reflect a metabolic status characterized by a respiratory chain operating at a lower rate (orthodox-like conformation) with respect to mitochondria from control leaves. CONCLUSIONS: To our knowledge, this is the first report showing a 3D reconstruction of plant mitochondria. Furthermore, these results suggest that a detailed characterization of the link between changes in the ultrastructure and functionality of mitochondria during different nutritional conditions, can provide a successful approach to understand the role of these organelles in the plant response to Fe deficiency.

Three-dimensional reconstruction, by TEM tomography, of the ultrastructural modifications occurring in Cucumis sativus L. mitochondria under Fe deficiency / G. Vigani, F. Faoro, A.M. Ferretti, F. Cantele, D. Maffi, M. Marelli, M. Maver, I. Murgia, G. Zocchi. - In: PLOS ONE. - ISSN 1932-6203. - 10:6(2015 Jun 24), pp. e0129141.1-e0129141.13.

Three-dimensional reconstruction, by TEM tomography, of the ultrastructural modifications occurring in Cucumis sativus L. mitochondria under Fe deficiency

G. Vigani
Primo
;
F. Faoro
Secondo
;
F. Cantele;D. Maffi;I. Murgia
Penultimo
;
G. Zocchi
Ultimo
2015

Abstract

BACKGROUND: Mitochondria, as recently suggested, might be involved in iron sensing and signalling pathways in plant cells. For a better understanding of the role of these organelles in mediating the Fe deficiency responses in plant cells, it is crucial to provide a full overview of their modifications occurring under Fe-limited conditions. The aim of this work is to characterize the ultrastructural as well as the biochemical changes occurring in leaf mitochondria of cucumber (Cucumis sativus L.) plants grown under Fe deficiency. METHODOLOGY/RESULTS: Mitochondrial ultrastructure was investigated by transmission electron microscopy (TEM) and electron tomography techniques, which allowed a three-dimensional (3D) reconstruction of cellular structures. These analyses reveal that mitochondria isolated from cucumber leaves appear in the cristae junction model conformation and that Fe deficiency strongly alters both the number and the volume of cristae. The ultrastructural changes observed in mitochondria isolated from Fe-deficient leaves reflect a metabolic status characterized by a respiratory chain operating at a lower rate (orthodox-like conformation) with respect to mitochondria from control leaves. CONCLUSIONS: To our knowledge, this is the first report showing a 3D reconstruction of plant mitochondria. Furthermore, these results suggest that a detailed characterization of the link between changes in the ultrastructure and functionality of mitochondria during different nutritional conditions, can provide a successful approach to understand the role of these organelles in the plant response to Fe deficiency.
Settore AGR/13 - Chimica Agraria
Settore AGR/12 - Patologia Vegetale
Settore BIO/04 - Fisiologia Vegetale
24-giu-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
journal.pone.0129141.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.38 MB
Formato Adobe PDF
4.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/290543
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact