Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), delivered as a membrane-bound molecule expressed on the surface of adenovirus-transduced CD34+ cells (CD34-TRAIL+), was analyzed for its apoptotic activity in vitro on 12 breast cancer cell lines representing estrogen receptor-positive, HER2+ and triplenegative (TN) subtypes and for its effect on tumor growth, vascularization, necrosis, and lung metastasis incidence in NOD/SCID mice xenografted with the TN breast cancer line MDA-MB-231. Mesenchymal TN cell lines, which are the richest in putative tumor stem cells among the different breast cancer cell subtypes, were the most susceptible to apoptosis induced by CD34-TRAIL+ cells. Indeed, tumor cell "stemness", assessed based on the proportion of CD44?/ CD24-/low cells, was significantly correlated with susceptibility to TRAIL. Moreover, in vitro cytotoxicity experiments showed that CD34-TRAIL+ cells selectively targeted CD44+/CD24-/low cells. Although in vivo treatment with CD34-TRAIL+ cells did not lead to tumor growth inhibition, treated mice revealed significantly larger areas of necrosis associated with damage of tumor vasculature than did control mice. Moreover, lungs from MDA-MD-231 tumorbearing mice were completely free of metastases at 12 days after the last injection of CD34-TRAIL+ cells, whereas metastases were present in all control mouse lungs. An antimetastatic effect of CD34-TRAIL+ cells was also observed in a model of experimental lung metastases. The correlation between in vitro susceptibility to membrane-bound TRAIL and tumor stem cell content, together with CD34-TRAIL+ cell-induced inhibition of the metastatic process, points to the selective targeting of cancer stem cells by CD34-armed cells and the potential value of such cells in eradicating tumor stem cells before the onset of overt metastases.

Surveillance of spontaneous breast cancer metastasis by TRAIL-expressing CD34+ cells in a xenograft model / A. Rossini, M. Giussani, A. Giacomini, C. Guarnotta, E. Tagliabue, A. Balsari. - In: BREAST CANCER RESEARCH AND TREATMENT. - ISSN 0167-6806. - 136:2(2012 Nov), pp. 457-467. [10.1007/s10549-012-2281-4]

Surveillance of spontaneous breast cancer metastasis by TRAIL-expressing CD34+ cells in a xenograft model

A. Rossini;M. Giussani;A. Giacomini;A. Balsari
2012

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), delivered as a membrane-bound molecule expressed on the surface of adenovirus-transduced CD34+ cells (CD34-TRAIL+), was analyzed for its apoptotic activity in vitro on 12 breast cancer cell lines representing estrogen receptor-positive, HER2+ and triplenegative (TN) subtypes and for its effect on tumor growth, vascularization, necrosis, and lung metastasis incidence in NOD/SCID mice xenografted with the TN breast cancer line MDA-MB-231. Mesenchymal TN cell lines, which are the richest in putative tumor stem cells among the different breast cancer cell subtypes, were the most susceptible to apoptosis induced by CD34-TRAIL+ cells. Indeed, tumor cell "stemness", assessed based on the proportion of CD44?/ CD24-/low cells, was significantly correlated with susceptibility to TRAIL. Moreover, in vitro cytotoxicity experiments showed that CD34-TRAIL+ cells selectively targeted CD44+/CD24-/low cells. Although in vivo treatment with CD34-TRAIL+ cells did not lead to tumor growth inhibition, treated mice revealed significantly larger areas of necrosis associated with damage of tumor vasculature than did control mice. Moreover, lungs from MDA-MD-231 tumorbearing mice were completely free of metastases at 12 days after the last injection of CD34-TRAIL+ cells, whereas metastases were present in all control mouse lungs. An antimetastatic effect of CD34-TRAIL+ cells was also observed in a model of experimental lung metastases. The correlation between in vitro susceptibility to membrane-bound TRAIL and tumor stem cell content, together with CD34-TRAIL+ cell-induced inhibition of the metastatic process, points to the selective targeting of cancer stem cells by CD34-armed cells and the potential value of such cells in eradicating tumor stem cells before the onset of overt metastases.
Cancer stem cells; Metastasis; MTRAIL; Triple-negative breast cancer
Settore MED/04 - Patologia Generale
nov-2012
Article (author)
File in questo prodotto:
File Dimensione Formato  
art%3A10.1007%2Fs10549-012-2281-4.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 721.9 kB
Formato Adobe PDF
721.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/288971
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact