Traditionally, nasal oxygen therapy has been delivered at low flows through nasal cannulae. In recent years, nasal cannulae designed to administer heated and humidified air/oxygen mixtures at high flows (up to 60 L/min) have been gaining popularity. These high-flow nasal cannula (HFNC) systems enhance patient comfort and tolerance compared with traditional high-flow oxygenation systems, such as nasal masks and nonrebreathing systems. By delivering higher flow rates, HFNC systems are less apt than traditional oxygenation systems to permit entrainment of room air during patient inspiration. Combined with the flushing of expired air from the upper airway during expiration, these mechanisms assure more reliable delivery of high Fio2 levels. The flushing of upper airway dead space also improves ventilatory efficiency and reduces the work of breathing. HFNC also generates a positive end-expiratory pressure (PEEP), which may counterbalance auto-PEEP, further reducing ventilator work; improve oxygenation; and provide back pressure to enhance airway patency during expiration, permitting more complete emptying. HFNC has been tried for multiple indications, including secretion retention, hypoxemic respiratory failure, and cardiogenic pulmonary edema, to counterbalance auto-PEEP in patients with COPD and as prophylactic therapy or treatment of respiratory failure postsurgery and postextubation. As of yet, very few high-quality studies have been published evaluating these indications, so recommendations regarding clinical applications of HFNC remain tentative.

Heated humidified high-flow nasal oxygen in adults: mechanisms of action and clinical implications / G. Spoletini, M. Alotaibi, F. Blasi, N.S. Hill. - In: CHEST. - ISSN 0012-3692. - 148:1(2015 Jul 01), pp. 253-261.

Heated humidified high-flow nasal oxygen in adults: mechanisms of action and clinical implications

G. Spoletini
Primo
;
F. Blasi
Penultimo
;
2015

Abstract

Traditionally, nasal oxygen therapy has been delivered at low flows through nasal cannulae. In recent years, nasal cannulae designed to administer heated and humidified air/oxygen mixtures at high flows (up to 60 L/min) have been gaining popularity. These high-flow nasal cannula (HFNC) systems enhance patient comfort and tolerance compared with traditional high-flow oxygenation systems, such as nasal masks and nonrebreathing systems. By delivering higher flow rates, HFNC systems are less apt than traditional oxygenation systems to permit entrainment of room air during patient inspiration. Combined with the flushing of expired air from the upper airway during expiration, these mechanisms assure more reliable delivery of high Fio2 levels. The flushing of upper airway dead space also improves ventilatory efficiency and reduces the work of breathing. HFNC also generates a positive end-expiratory pressure (PEEP), which may counterbalance auto-PEEP, further reducing ventilator work; improve oxygenation; and provide back pressure to enhance airway patency during expiration, permitting more complete emptying. HFNC has been tried for multiple indications, including secretion retention, hypoxemic respiratory failure, and cardiogenic pulmonary edema, to counterbalance auto-PEEP in patients with COPD and as prophylactic therapy or treatment of respiratory failure postsurgery and postextubation. As of yet, very few high-quality studies have been published evaluating these indications, so recommendations regarding clinical applications of HFNC remain tentative.
Settore MED/10 - Malattie dell'Apparato Respiratorio
1-lug-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
chest_148_1_253.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 604.99 kB
Formato Adobe PDF
604.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/287861
Citazioni
  • ???jsp.display-item.citation.pmc??? 130
  • Scopus 292
  • ???jsp.display-item.citation.isi??? 256
social impact