Estrogens play an important role in the regulation of energy homeostasis in female mammals and a reduced ovarian function,dueto natural aging or surgery, is associated withbodyweight increase and fat redistribution. This disruption of energy homeostasis may constitute a trigger for several pathologiesknownto be associated with climacterium; however, so far, limited attention has been devoted to the ability of estrogen replacement therapies (ERT) to reinstate the balanced energy metabolism characteristic of cycling female mammals. The purpose of the present study was to compare the efficacy of selected ERTs in reversing the ovariectomy-induced gain in body weight. To this aim female ERE-Luc mice were ovariectomized and, after 3 weeks, treated per os for 21 days with: conjugated estrogens, two selective estrogen receptor modulators (bazedoxifene and raloxifene), and the combination of bazedoxifene plus conjugated estrogens (tissue-selective estrogen complex, TSEC). The study shows that the therapy based on TSEC was the most efficacious in reducing the body weight accrued by ovariectomy (OVX). In addition, by means of in vivo imaging, the TSEC treatment wasshownto increase estrogen receptor (ER) transcriptional activity selectively in the arcuate nucleus, which is a key area for the control of energy homeostasis. Finally, quantitative analysis of the mRNAs encoding orexigenic and anorexigenic peptides indicated that following ERT with TSEC there was a significant change in Agrp, NPY, and Kiss-1 mRNA accumulation in the whole hypothalamus. Considering that prior studies showed that ERT with TSEC was able to mimic the rhythm of ER oscillatory activity during the reproductive cycle and that such fluctuations were relevant for energy metabolism, the present observations further point to the ER tetradian oscillation as an important component of the ER signaling necessary for the full hormone action and therefore for an efficacious ERT.

Estrogen replacement therapy regulation of energy metabolism in female mouse hypothalamus / R. Fontana, S. Della Torre, C. Meda, A. Longo, C. Eva, A.C. Maggi. - In: ENDOCRINOLOGY. - ISSN 0013-7227. - 155:6(2014 Jun), pp. 2213-2221. [10.1210/en.2013-1731]

Estrogen replacement therapy regulation of energy metabolism in female mouse hypothalamus

R. Fontana
Primo
;
S. Della Torre
Secondo
;
C. Meda;A.C. Maggi
2014

Abstract

Estrogens play an important role in the regulation of energy homeostasis in female mammals and a reduced ovarian function,dueto natural aging or surgery, is associated withbodyweight increase and fat redistribution. This disruption of energy homeostasis may constitute a trigger for several pathologiesknownto be associated with climacterium; however, so far, limited attention has been devoted to the ability of estrogen replacement therapies (ERT) to reinstate the balanced energy metabolism characteristic of cycling female mammals. The purpose of the present study was to compare the efficacy of selected ERTs in reversing the ovariectomy-induced gain in body weight. To this aim female ERE-Luc mice were ovariectomized and, after 3 weeks, treated per os for 21 days with: conjugated estrogens, two selective estrogen receptor modulators (bazedoxifene and raloxifene), and the combination of bazedoxifene plus conjugated estrogens (tissue-selective estrogen complex, TSEC). The study shows that the therapy based on TSEC was the most efficacious in reducing the body weight accrued by ovariectomy (OVX). In addition, by means of in vivo imaging, the TSEC treatment wasshownto increase estrogen receptor (ER) transcriptional activity selectively in the arcuate nucleus, which is a key area for the control of energy homeostasis. Finally, quantitative analysis of the mRNAs encoding orexigenic and anorexigenic peptides indicated that following ERT with TSEC there was a significant change in Agrp, NPY, and Kiss-1 mRNA accumulation in the whole hypothalamus. Considering that prior studies showed that ERT with TSEC was able to mimic the rhythm of ER oscillatory activity during the reproductive cycle and that such fluctuations were relevant for energy metabolism, the present observations further point to the ER tetradian oscillation as an important component of the ER signaling necessary for the full hormone action and therefore for an efficacious ERT.
body-fat distribution; postmenopausal women; receptor-activity; adipose-tissue; insulin-resistance; neurons mediate; arcuate nucleus; gene-expression; visceral fat; food-intake
Settore BIO/14 - Farmacologia
giu-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
en%2E2013-1731.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/271835
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
social impact