The synchrotron SIS300 is a core component of the FAIR facility, which is under development at GSI. The high intensities of proton and heavy ion beams require the synchrotron to be ramped in a few seconds. In particular, the bending dipole magnets have to be pulsed from the injection magnetic field of 1.5 T up to the maximum field of 4.5 T at the rate of 1 T/s. The fast field ramp together with the particular characteristic to be geometrically curved (the sagitta is 114 mm) make these dipoles critical from design and construction point of views. Aside from the thermal ac losses, the mechanical fatigue is one of the main issues of these 7.8-m long magnets having cos-theta shaped coils with a 100-mm bore. Just the large number of magnetic cycles (107) oriented the mechanical design to the involvement of stiff structures working at a relatively low stress level with respect to the elastic limits. To this aim, the coils are mechanically supported by 3-mm thick laminated stainless steel collars, assembled through keys, and 1-mm thick iron yoke laminations kept together through large stainless steel C-shaped clamps. The mechanical behavior of these challenging dipoles has been studied in detail through several 2 and 3-D finite-element (FE) analyses. In order to assess the soundness of the mechanical analysis, a series of mechanical studies were performed on stacking samples and single poles under compression, comparing FE computations with the results of the mechanical tests. Finally, the collaring of short models was performed and the measured deformations were compared with expectations.

Experimental study of the mechanical characteristics of SIS300 Cos-theta dipolar coils / S. Farinon, P. Fabbricatore, R. Musenich, G. Bellomo, M. Sorbi, G. Volpini, U. Gambardella, S. Angius, A. Barutti, D. Magrassi, R. Marabotto. - In: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. - ISSN 1051-8223. - 25:2(2015 Apr), pp. 4003605.1-4003605.5. ((Intervento presentato al convegno Applied Superconductivity Conference tenutosi a Charlotte nel 2014.

Experimental study of the mechanical characteristics of SIS300 Cos-theta dipolar coils

G. Bellomo;M. Sorbi;
2015

Abstract

The synchrotron SIS300 is a core component of the FAIR facility, which is under development at GSI. The high intensities of proton and heavy ion beams require the synchrotron to be ramped in a few seconds. In particular, the bending dipole magnets have to be pulsed from the injection magnetic field of 1.5 T up to the maximum field of 4.5 T at the rate of 1 T/s. The fast field ramp together with the particular characteristic to be geometrically curved (the sagitta is 114 mm) make these dipoles critical from design and construction point of views. Aside from the thermal ac losses, the mechanical fatigue is one of the main issues of these 7.8-m long magnets having cos-theta shaped coils with a 100-mm bore. Just the large number of magnetic cycles (107) oriented the mechanical design to the involvement of stiff structures working at a relatively low stress level with respect to the elastic limits. To this aim, the coils are mechanically supported by 3-mm thick laminated stainless steel collars, assembled through keys, and 1-mm thick iron yoke laminations kept together through large stainless steel C-shaped clamps. The mechanical behavior of these challenging dipoles has been studied in detail through several 2 and 3-D finite-element (FE) analyses. In order to assess the soundness of the mechanical analysis, a series of mechanical studies were performed on stacking samples and single poles under compression, comparing FE computations with the results of the mechanical tests. Finally, the collaring of short models was performed and the measured deformations were compared with expectations.
Finite-element (FE) mechanical analysis; pulsed dipole; SIS300
Settore FIS/01 - Fisica Sperimentale
Settore FIS/04 - Fisica Nucleare e Subnucleare
apr-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
07027227.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/270995
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact