Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a potentially fatal infection that is endemic in Southeast Asia and Northern Australia that is poorly controlled by antibiotics. Research efforts to identify antigenic components for a melioidosis vaccine have led to the identification of several proteins, including subunits forming the flagella that mediate bacterial motility, host colonization, and virulence. This study focuses on the B. pseudomallei flagellar hook-associated protein (FlgKBp), and provides the first insights into the 3D structure of FlgK proteins as targets for structure-based antigen engineering. The FlgKBp crystal structure (presented here at 1.8-Å resolution) reveals a multidomain fold, comprising two small β-domains protruding from a large elongated α-helical bundle core. The evident structural similarity to flagellin, the flagellar filament subunit protein, suggests that, depending on the bacterial species, flagellar hook-associated proteins are likely to show a conserved, elongated α-helical bundle scaffold coupled to a variable number of smaller domains. Furthermore, we present immune serum recognition data confirming, in agreement with previous findings, that recovered melioidosis patients produce elevated levels of antibodies against FlgKBp, in comparison with seronegative and seropositive healthy subjects. Moreover, we show that FlgKBp has cytotoxic effects on cultured murine macrophages, suggesting an important role in bacterial pathogenesis. Finally, computational epitope prediction methods applied to the FlgKBp crystal structure, coupled with in vitro mapping, allowed us to predict three antigenic regions that locate to discrete protein domains. Taken together, our results point to FlgKBp as a candidate for the design and production of epitope-containing subunits/domains as potential vaccine components.

From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK / L.J. Gourlay, R.J. Thomas, C. Peri, O. Conchillo Solé, M. Ferrer Navarro, A. Nithichanon, J. Vila, X. Daura, G. Lertmemongkolchai, R. Titball, G. Colombo, M. Bolognesi. - In: THE FEBS JOURNAL. - ISSN 1742-464X. - 282:7(2015), pp. 1319-1333. [10.1111/febs.13223]

From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK

L.J. Gourlay
Primo
;
C. Peri;M. Bolognesi
2015

Abstract

Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a potentially fatal infection that is endemic in Southeast Asia and Northern Australia that is poorly controlled by antibiotics. Research efforts to identify antigenic components for a melioidosis vaccine have led to the identification of several proteins, including subunits forming the flagella that mediate bacterial motility, host colonization, and virulence. This study focuses on the B. pseudomallei flagellar hook-associated protein (FlgKBp), and provides the first insights into the 3D structure of FlgK proteins as targets for structure-based antigen engineering. The FlgKBp crystal structure (presented here at 1.8-Å resolution) reveals a multidomain fold, comprising two small β-domains protruding from a large elongated α-helical bundle core. The evident structural similarity to flagellin, the flagellar filament subunit protein, suggests that, depending on the bacterial species, flagellar hook-associated proteins are likely to show a conserved, elongated α-helical bundle scaffold coupled to a variable number of smaller domains. Furthermore, we present immune serum recognition data confirming, in agreement with previous findings, that recovered melioidosis patients produce elevated levels of antibodies against FlgKBp, in comparison with seronegative and seropositive healthy subjects. Moreover, we show that FlgKBp has cytotoxic effects on cultured murine macrophages, suggesting an important role in bacterial pathogenesis. Finally, computational epitope prediction methods applied to the FlgKBp crystal structure, coupled with in vitro mapping, allowed us to predict three antigenic regions that locate to discrete protein domains. Taken together, our results point to FlgKBp as a candidate for the design and production of epitope-containing subunits/domains as potential vaccine components.
Burkholderia pseudomallei; Antigen; Epitope discovery; Flagellar hook-associated protein; Structural vaccinology
Settore BIO/10 - Biochimica
   Discovery/Development of diagnostic probes and vaccine candidates targeting burkholderia infections
   PROVA
   REGIONE LOMBARDIA
   42666248
2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
r1_FEBS_13223_review.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Gourlay_et_al-2015-FEBS_Journal.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 623.39 kB
Formato Adobe PDF
623.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/269243
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact