We have investigated the relevance of d-aspartate oxidase, the only enzyme known to selectively degrade d-aspartate (d-Asp), in modulating glutamatergic system homeostasis. Interestingly, the lack of the Ddo gene, by raising d-Asp content, induces a substantial increase in extracellular glutamate (Glu) levels in Ddo-mutant brains. Consistent with an exaggerated and persistent N-methyl-. d-aspartate receptor (NMDAR) stimulation, we documented in Ddo knockouts severe age-dependent structural and functional alterations mirrored by expression of active caspases 3 and 7 along with appearance ofdystrophic microglia and reactive astrocytes. In addition, prolonged elevation of d-Asp triggered in mutants alterations of NMDAR-dependent synaptic plasticity associated to reduction of hippocampalGluN1 and GluN2B subunits selectively located at synaptic sites and to increase in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-to-. N-methyl-. d-aspartate ratio. These effects, all of which converged on a progressive hyporesponsiveness at NMDAR sites, functionally resulted in a greater vulnerability to phencyclidine-induced prepulse inhibition deficits in mutants. In conclusion, our results indicate that d-aspartate oxidase, by strictly regulating d-Asp levels, impacts on the homeostasis of glutamatergic system, thus preventing accelerated neurodegenerative processes.

d-Aspartate oxidase influences glutamatergic system homeostasis in mammalian brain / L. Cristino, L. Luongo, M. Squillace, G. Paolone, D. Mango, S. Piccinin, E. Zianni, R. Imperatore, M. Iannotta, F. Longo, F. Errico, A.L. Vescovi, M. Morari, S. Maione, F. Gardoni, R. Nisticò, A. Usiello. - In: NEUROBIOLOGY OF AGING. - ISSN 0197-4580. - 36:5(2015 May), pp. 1890-1902.

d-Aspartate oxidase influences glutamatergic system homeostasis in mammalian brain

E. Zianni;F. Gardoni;
2015

Abstract

We have investigated the relevance of d-aspartate oxidase, the only enzyme known to selectively degrade d-aspartate (d-Asp), in modulating glutamatergic system homeostasis. Interestingly, the lack of the Ddo gene, by raising d-Asp content, induces a substantial increase in extracellular glutamate (Glu) levels in Ddo-mutant brains. Consistent with an exaggerated and persistent N-methyl-. d-aspartate receptor (NMDAR) stimulation, we documented in Ddo knockouts severe age-dependent structural and functional alterations mirrored by expression of active caspases 3 and 7 along with appearance ofdystrophic microglia and reactive astrocytes. In addition, prolonged elevation of d-Asp triggered in mutants alterations of NMDAR-dependent synaptic plasticity associated to reduction of hippocampalGluN1 and GluN2B subunits selectively located at synaptic sites and to increase in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-to-. N-methyl-. d-aspartate ratio. These effects, all of which converged on a progressive hyporesponsiveness at NMDAR sites, functionally resulted in a greater vulnerability to phencyclidine-induced prepulse inhibition deficits in mutants. In conclusion, our results indicate that d-aspartate oxidase, by strictly regulating d-Asp levels, impacts on the homeostasis of glutamatergic system, thus preventing accelerated neurodegenerative processes.
d-aspartate; D-aspartate oxidase; Glutamate; Hippocampus; Microglia; Prefrontal cortex
Settore BIO/14 - Farmacologia
mag-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0197458015001037-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 4.23 MB
Formato Adobe PDF
4.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/268375
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 41
social impact