The behavior of natural microporous cavansite and pentagonite, orthorhombic dimorphs of Ca(VO) (Si4O10)x4H2O, was studied at high pressure by means of in situ synchrotron X-ray powder diffraction with a diamond anvil cell using two different pressure-transmitting fluids: methanol:ethanol: water = 16:3:1 (m.e.w.) and silicone oil (s.o.). In situ diffraction-data on a cavansite sample were collected up to 8.17(5) GPa in m.e.w, and up to 7.28(5) GPa in s.o. The high-pressure structure evolution was studied on the basis of structural refinements at 1.08(5), 3.27(5) and 6.45(5) GPa. The compressional behavior is strongly anisotropic. When the sample is compressed in s.o. from Pamb to 7.28(5) GPa, the volume contraction is 12.2%, whereas a, b and c decrease by 1.6%, 10.3% and 0.3%, respectively. The main deformation mechanisms at high-pressure are basically driven by variation of the T–O–T angles. Powder diffraction data on a pentagonite sample were collected up to 8.26(5) GPa in m.e.w and 8.35(5) GPa in s.o. Additional single-crystal X-ray diffraction experiments were performed in m.e.w. up to 2.04(5) GPa. In both cases, pressure-induced over-hydration was observed in m.e.w. at high pressure. The penetration of a new H2O molecule leads to a stiffening effect of the whole structure. Moreover, between 2.45(5) and 2.96(5) GPa in m.e.w., a phase transition from an orthorhombic to a triclinic phase was observed. In s.o. pentagonite also transformed to a triclinic phase above 1.71(5) GPa. The overall compressibility of pentagonite and cavansite in s.o. is comparable, with a volume contraction of 11.6% and 12.2%, respectively.

Elastic behavior and pressure-induced structural modifications of the microporous Ca(VO)Si4O10·4H2O dimorphs cavansite and pentagonite / R.M. Danisi, T. Armbruster, R. Arletti, G.D. Gatta, G. Vezzalini, S. Quartieri, V. Dmitriev. - In: MICROPOROUS AND MESOPOROUS MATERIALS. - ISSN 1387-1811. - 204:C(2015), pp. 257-268. [10.1016/j.micromeso.2014.11.029]

Elastic behavior and pressure-induced structural modifications of the microporous Ca(VO)Si4O10·4H2O dimorphs cavansite and pentagonite

G.D. Gatta;
2015

Abstract

The behavior of natural microporous cavansite and pentagonite, orthorhombic dimorphs of Ca(VO) (Si4O10)x4H2O, was studied at high pressure by means of in situ synchrotron X-ray powder diffraction with a diamond anvil cell using two different pressure-transmitting fluids: methanol:ethanol: water = 16:3:1 (m.e.w.) and silicone oil (s.o.). In situ diffraction-data on a cavansite sample were collected up to 8.17(5) GPa in m.e.w, and up to 7.28(5) GPa in s.o. The high-pressure structure evolution was studied on the basis of structural refinements at 1.08(5), 3.27(5) and 6.45(5) GPa. The compressional behavior is strongly anisotropic. When the sample is compressed in s.o. from Pamb to 7.28(5) GPa, the volume contraction is 12.2%, whereas a, b and c decrease by 1.6%, 10.3% and 0.3%, respectively. The main deformation mechanisms at high-pressure are basically driven by variation of the T–O–T angles. Powder diffraction data on a pentagonite sample were collected up to 8.26(5) GPa in m.e.w and 8.35(5) GPa in s.o. Additional single-crystal X-ray diffraction experiments were performed in m.e.w. up to 2.04(5) GPa. In both cases, pressure-induced over-hydration was observed in m.e.w. at high pressure. The penetration of a new H2O molecule leads to a stiffening effect of the whole structure. Moreover, between 2.45(5) and 2.96(5) GPa in m.e.w., a phase transition from an orthorhombic to a triclinic phase was observed. In s.o. pentagonite also transformed to a triclinic phase above 1.71(5) GPa. The overall compressibility of pentagonite and cavansite in s.o. is comparable, with a volume contraction of 11.6% and 12.2%, respectively.
Cavansite; Elastic behavior; Heteropolyhedral frameworks; Pentagonite; Pressure-induced hydration
Settore GEO/09 - Georisorse Miner.Appl.Mineral.-Petrogr.per l'amb.e i Beni Cul
2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
Pentagonite_MMM.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pentagonite_R1..pdf

accesso aperto

Descrizione: Versione accettata dall'editore per la stampa
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 222.19 kB
Formato Adobe PDF
222.19 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/265696
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact