The strontium is an alkaline earth metal found in nature as trace element. Chemically similar to calcium, it is known to be involved in the human bone mineral metabolism. The strontium ranelate has been approved in therapy as drug with both anti-resorption and anabolic effects on bone tissues. Since few data in vivo are available, we used Danio rerio as animal model to evaluate the effects of strontium on skeletal development. First, toxicity assay performed on zebrafish embryos estimated the LC50 around 6. mM. Since several zebrafish bones are formed from cartilage mineralization, we evaluated whether strontium affects cartilage development during embryogenesis. Strontium does not perturb the development of the cartilage tissues before the endochondral osteogenesis takes place. About the mineralization process, we evidentiated an increase of vertebral mineralization respect to controls at lower strontium concentrations whereas higher concentration inhibited mineral deposition in dose dependent fashion. Our results evidentiated, in addition, that the calcium/strontium rate but not the absolute level of strontium modulates the mineralization process during embryonic osteogenesis.Zebrafish represents an excellent animal model to study the role of micronutrients in the development of the tissues/organs because the ions are not absorbed by intestine but assumed by skin diffusion.

The effects of strontium on skeletal development in zebrafish embryo / S. Pasqualetti, G. Banfi, M. Mariotti. - In: JOURNAL OF TRACE ELEMENTS IN MEDICINE AND BIOLOGY. - ISSN 0946-672X. - 27:4(2013 Oct), pp. 375-379. [10.1016/j.jtemb.2013.06.002]

The effects of strontium on skeletal development in zebrafish embryo

M. Mariotti
2013

Abstract

The strontium is an alkaline earth metal found in nature as trace element. Chemically similar to calcium, it is known to be involved in the human bone mineral metabolism. The strontium ranelate has been approved in therapy as drug with both anti-resorption and anabolic effects on bone tissues. Since few data in vivo are available, we used Danio rerio as animal model to evaluate the effects of strontium on skeletal development. First, toxicity assay performed on zebrafish embryos estimated the LC50 around 6. mM. Since several zebrafish bones are formed from cartilage mineralization, we evaluated whether strontium affects cartilage development during embryogenesis. Strontium does not perturb the development of the cartilage tissues before the endochondral osteogenesis takes place. About the mineralization process, we evidentiated an increase of vertebral mineralization respect to controls at lower strontium concentrations whereas higher concentration inhibited mineral deposition in dose dependent fashion. Our results evidentiated, in addition, that the calcium/strontium rate but not the absolute level of strontium modulates the mineralization process during embryonic osteogenesis.Zebrafish represents an excellent animal model to study the role of micronutrients in the development of the tissues/organs because the ions are not absorbed by intestine but assumed by skin diffusion.
Bone; Embryo; Mineralization; Strontium; Zebrafish; Animals; Dose-Response Relationship, Drug; Muscle, Skeletal; Strontium; Structure-Activity Relationship; Zebrafish; Biochemistry; Inorganic Chemistry; Molecular Medicine
Settore MED/04 - Patologia Generale
ott-2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0946672X13000928-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/257964
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact