Frigyes Karinthy, in his 1929 short story “Láancszemek” (“Chains”) suggested that any two persons are distanced by at most six friendship links. (The exact wording of the story is slightly ambiguous: “He bet us that, using no more than five individuals, one of whom is a personal acquaintance, he could contact the selected individual […]”. It is not completely clear whether the selected individual is part of the five, so this could actually allude to distance five or six in the language of graph theory, but the “six degrees of separation” phrase stuck after John Guare's 1990 eponymous play. Following Milgram's definition and Guare's interpretation, we will assume that “degrees of separation” is the same as “distance minus one”, where “distance” is the usual path length—the number of arcs in the path.) Stanley Milgram in his famous experiment challenged people to route postcards to a fixed recipient by passing them only through direct acquaintances. The average number of intermediaries on the path of the postcards lay between 4.4 and 5.7, depending on the sample of people chosen. We report the results of the first world-scale social-network graph-distance computations, using the entire Facebook network of active users (≈721 million users, ≈69 billion friendship links). The average distance we observe is 4.74, corresponding to 3.74 intermediaries or “degrees of separation”, showing that the world is even smaller than we expected, and prompting the title of this paper. More generally, we study the distance distribution of Facebook and of some interesting geographic subgraphs, looking also at their evolution over time. The networks we are able to explore are almost two orders of magnitude larger than those analysed in the previous literature. We report detailed statistical metadata showing that our measurements (which rely on probabilistic algorithms) are very accurate.

Four degrees of separation / L. Backstrom, P. Boldi, M. Rosa, J. Ugander, S. Vigna - In: Proceedings of the 4. annual ACM Web science conference : WebSci '12 : June 22-24, 2012, Evanston, IL.New York : ACM press, 2012. - ISBN 9781450312288. - pp. 33-42 (( Intervento presentato al 4. convegno ACM Web science conference tenutosi a Evanston (IL) nel 2012 [10.1145/2380718.2380723].

Four degrees of separation

P. Boldi
;
M. Rosa
;
S. Vigna
Ultimo
2012

Abstract

Frigyes Karinthy, in his 1929 short story “Láancszemek” (“Chains”) suggested that any two persons are distanced by at most six friendship links. (The exact wording of the story is slightly ambiguous: “He bet us that, using no more than five individuals, one of whom is a personal acquaintance, he could contact the selected individual […]”. It is not completely clear whether the selected individual is part of the five, so this could actually allude to distance five or six in the language of graph theory, but the “six degrees of separation” phrase stuck after John Guare's 1990 eponymous play. Following Milgram's definition and Guare's interpretation, we will assume that “degrees of separation” is the same as “distance minus one”, where “distance” is the usual path length—the number of arcs in the path.) Stanley Milgram in his famous experiment challenged people to route postcards to a fixed recipient by passing them only through direct acquaintances. The average number of intermediaries on the path of the postcards lay between 4.4 and 5.7, depending on the sample of people chosen. We report the results of the first world-scale social-network graph-distance computations, using the entire Facebook network of active users (≈721 million users, ≈69 billion friendship links). The average distance we observe is 4.74, corresponding to 3.74 intermediaries or “degrees of separation”, showing that the world is even smaller than we expected, and prompting the title of this paper. More generally, we study the distance distribution of Facebook and of some interesting geographic subgraphs, looking also at their evolution over time. The networks we are able to explore are almost two orders of magnitude larger than those analysed in the previous literature. We report detailed statistical metadata showing that our measurements (which rely on probabilistic algorithms) are very accurate.
distance distribution; degrees of separation; large-scale graph computations
Settore INF/01 - Informatica
2012
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/257522
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 280
  • ???jsp.display-item.citation.isi??? ND
social impact