How can a large number of different phenotypes be generated by a limited number of genotypes? Promiscuity between different, structurally related and/or unrelated proteins seems to provide a plausible explanation to this pertinent question. Strategies able to predict such functional interrelations between different proteins are important to restrict the number of putative candidate proteins, which can then be subjected to time-consuming functional tests. Here we describe the use of the operon structure of the nematode genome to identify partner proteins in human cells. In this work we focus on ion channels proteins, which build an interface between the cell and the outside world and are responsible for a growing number of diseases in humans. However, the proposed strategy for the partner protein quest is not restricted to this scientific area but can be adopted in virtually every field of human biology where protein-protein interactions are assumed

A new gene-finding tool. Using the Caenorhabditis elegans operons for identifying functional partner proteins in human cells / S. Eichmuller, V. Vezzoli, C. Bazzini, M. Ritter, J. Furst, M. Jakab, A. Ravasio, S. Chwatal, S. Dossena, G. Bottà, G. Meyer, B. Maier, G. Valenti, F. Lang, M. Paulmichl. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 279:8(2004), pp. 7136-7146.

A new gene-finding tool. Using the Caenorhabditis elegans operons for identifying functional partner proteins in human cells

V. Vezzoli
Secondo
;
C. Bazzini;S. Dossena;G. Bottà;G. Meyer;M. Paulmichl
Ultimo
2004

Abstract

How can a large number of different phenotypes be generated by a limited number of genotypes? Promiscuity between different, structurally related and/or unrelated proteins seems to provide a plausible explanation to this pertinent question. Strategies able to predict such functional interrelations between different proteins are important to restrict the number of putative candidate proteins, which can then be subjected to time-consuming functional tests. Here we describe the use of the operon structure of the nematode genome to identify partner proteins in human cells. In this work we focus on ion channels proteins, which build an interface between the cell and the outside world and are responsible for a growing number of diseases in humans. However, the proposed strategy for the partner protein quest is not restricted to this scientific area but can be adopted in virtually every field of human biology where protein-protein interactions are assumed
Adenosine Triphosphate; Amino Acid Sequence; Animals; Base Sequence; Caenorhabditis elegans; channel; chemistry; DNA,Complementary; Fluorescence Resonance Energy Transfer; genetics; Genome; Human; Ion Channels; Ions; Light; metabolism; Models,Genetic; Molecular Sequence Data; Oligonucleotide Array Sequence Analysis; Operon; physiology; Plasmids; Protein Binding; Proteins; Recombinant Fusion Proteins; Reverse Transcriptase Polymerase Chain Reaction; Sequence Homology,Amino Acid; Species Specificity
Settore BIO/09 - Fisiologia
2004
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/25412
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact