We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewise stretching 2DSW is able to take into account inhomogeneous variations of shapes. We apply 2DSW to ECG recordings to extract beat-to-beat variability in QT intervals (QTV) that is indicative of ventricular repolarization lability and typically characterised by a low signal-to-noise ratio. Simulation studies show high robustness of our approach in presence of typical ECG artefacts. Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) shows significantly increased QTV in patients (normal subject 2.36 ms \pm 1.05 ms vs. MI patients 5.94 ms \pm 5.23 ms (mean \pm std), p<0.001). Evaluation of a standard QT database shows that 2DSW allows highly accurate tracking of QRS-onset and T-end. In conclusion, the two-dimensional warping approach introduced here is able to detect subtle changes in noisy quasi-periodic biomedical signals such as ECG and may have diagnostic potential for measuring repolarization lability in MI patients. In more general terms, the proposed method provides a novel means for morphological characterization of 1d signals.

Two-dimensional warping for one-dimensional signals – Conceptual framework and application to ECG processing / M. Schmidt, M. Baumert, A. Porta, H. Malberg, S. Zaunseder. - In: IEEE TRANSACTIONS ON SIGNAL PROCESSING. - ISSN 1053-587X. - 62:21(2014), pp. 6891378.5577-6891378.5588. [10.1109/TSP.2014.2354313]

Two-dimensional warping for one-dimensional signals – Conceptual framework and application to ECG processing

A. Porta;
2014

Abstract

We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewise stretching 2DSW is able to take into account inhomogeneous variations of shapes. We apply 2DSW to ECG recordings to extract beat-to-beat variability in QT intervals (QTV) that is indicative of ventricular repolarization lability and typically characterised by a low signal-to-noise ratio. Simulation studies show high robustness of our approach in presence of typical ECG artefacts. Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) shows significantly increased QTV in patients (normal subject 2.36 ms \pm 1.05 ms vs. MI patients 5.94 ms \pm 5.23 ms (mean \pm std), p<0.001). Evaluation of a standard QT database shows that 2DSW allows highly accurate tracking of QRS-onset and T-end. In conclusion, the two-dimensional warping approach introduced here is able to detect subtle changes in noisy quasi-periodic biomedical signals such as ECG and may have diagnostic potential for measuring repolarization lability in MI patients. In more general terms, the proposed method provides a novel means for morphological characterization of 1d signals.
Dynamic time warping; ECG; QT; QT interval; QT variability; signal processing; two-dimensional warping; warping
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
06891378.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/240921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 36
social impact