Muscle regulatory factors activate myogenesis in all vertebrates, but their role has been studied in great detail only in the mouse embryo, where all but myogenin – Myod, Myf5 and Mrf4 – are sufficient to activate (albeit not completely) skeletal myogenesis. In the zebrafish embryo, myod and myf5 are required for induction of myogenesis because their simultaneous ablation prevents muscle development. Here we show that mrf4 but not myog can fully rescue myogenesis in the myod/myf5 double morphant via a selective and robust activation of myod, in keeping with its chromatin remodelling function in vitro. Rescue does not happen spontaneously, because the gene, unlike that in the mouse embryo, is expressed only at the onset of muscle differentiation, Moreover, because of the transient nature of morpholino inhibition, we were able to investigate how myogenesis occurs in the absence of a myotome. We report that in the complete absence of a myotome, subsequent myogenesis is abolished, whereas myogenesis does proceed, albeit abnormally, when the morpholino inhibition was not complete. Therefore our data also show that the early myotome is essential for subsequent skeletal muscle differentiation and patterning in the zebrafish.

Myogenic determination in Zebrafish is entirely dependent upon myf5 and myod but can be rescued by exogenous mrf4 / E. Schnapp, A. Pistocchi, E. Karampetsou, E. Foglia, C. Lora Lamia, F. Cotelli, G. Cossu. ((Intervento presentato al convegno Zebrafish day tenutosi a Brescia nel 2009.

Myogenic determination in Zebrafish is entirely dependent upon myf5 and myod but can be rescued by exogenous mrf4

A. Pistocchi;C. Lora Lamia;F. Cotelli;G. Cossu
2009

Abstract

Muscle regulatory factors activate myogenesis in all vertebrates, but their role has been studied in great detail only in the mouse embryo, where all but myogenin – Myod, Myf5 and Mrf4 – are sufficient to activate (albeit not completely) skeletal myogenesis. In the zebrafish embryo, myod and myf5 are required for induction of myogenesis because their simultaneous ablation prevents muscle development. Here we show that mrf4 but not myog can fully rescue myogenesis in the myod/myf5 double morphant via a selective and robust activation of myod, in keeping with its chromatin remodelling function in vitro. Rescue does not happen spontaneously, because the gene, unlike that in the mouse embryo, is expressed only at the onset of muscle differentiation, Moreover, because of the transient nature of morpholino inhibition, we were able to investigate how myogenesis occurs in the absence of a myotome. We report that in the complete absence of a myotome, subsequent myogenesis is abolished, whereas myogenesis does proceed, albeit abnormally, when the morpholino inhibition was not complete. Therefore our data also show that the early myotome is essential for subsequent skeletal muscle differentiation and patterning in the zebrafish.
2009
Settore BIO/06 - Anatomia Comparata e Citologia
Myogenic determination in Zebrafish is entirely dependent upon myf5 and myod but can be rescued by exogenous mrf4 / E. Schnapp, A. Pistocchi, E. Karampetsou, E. Foglia, C. Lora Lamia, F. Cotelli, G. Cossu. ((Intervento presentato al convegno Zebrafish day tenutosi a Brescia nel 2009.
Conference Object
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/239188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact