Importance: Intrauterine fetal death or stillbirth occurs in approximately 1 out of every 160 pregnancies and accounts for 50% of all perinatal deaths. Postmortem evaluation fails to elucidate an underlying cause in many cases. Long QT syndrome (LQTS) may contribute to this problem. Objective: To determine the spectrum and prevalence of mutations in the 3 most common LQTS susceptible genes (KCNQ1, KCNH2, and SCN5A) for a cohort of unexplained cases. Design, Setting, and Patients: In this case series, retrospective postmortem genetic testing was conducted on a convenience sample of 91 unexplained intrauterine fetal deaths (mean [SD] estimated gestational age at fetal death, 26.3 [8.7] weeks) that were collected from 2006-2012 by the Mayo Clinic, Rochester, Minnesota, or the Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. More than 1300 ostensibly healthy individuals served as controls. In addition, publicly available exome databases were assessed for the general population frequency of identified genetic variants. Main Outcomes and Measures: Comprehensive mutational analyses of KCNQ1 (KV7.1, LQTS type 1), KCNH2 (HERG/KV11.1, LQTS type 2), and SCN5A (NaV1.5, LQTS type 3) were performed using denaturing high-performance liquid chromatography and direct DNA sequencing on genomic DNA extracted from decedent tissue. Functional analyses of novel mutations were performed using heterologous expression and patch-clamp recording. Results: The 3 putative LQTS susceptibility missense mutations (KCNQ1, p.A283T; KCNQ1, p.R397W; and KCNH2[1b], p.R25W), with a heterozygous frequency of less than 0.05% in more than 10 000 publicly available exomes and absent in more than 1000 ethnically similar control patients, were discovered in 3 intrauterine fetal deaths (3.3% [95% CI, 0.68%-9.3%]). Both K V7.1-A283T (16-week male) and KV7.1-R397W (16-week female) mutations were associated with marked KV7.1 loss-of-function consistent with in utero LQTS type 1, whereas the HERG1b-R25W mutation (33.2-week male) exhibited a loss of function consistent with in utero LQTS type 2. In addition, 5 intrauterine fetal deaths hosted SCN5A rare nonsynonymous genetic variants (p.T220I, p.R1193Q, involving 2 cases, and p.P2006A, involving 2 cases) that conferred in vitro electrophysiological characteristics consistent with potentially pro-arrhythmic phenotypes. Conclusions and Relevance: In this molecular genetic evaluation of 91 cases of intrauterine fetal death, missense mutations associated with LQTS susceptibility were discovered in 3 cases (3.3%) and overall, genetic variants leading to dysfunctional LQTS-associated ion channels in vitro were discovered in 8 cases (8.8%). These preliminary findings may provide insights into mechanisms of some cases of stillbirth.

Long QT syndrome-associated mutations in intrauterine fetal death / L. Crotti, D.J. Tester, W.M. White, D.C. Bartos, R. Insolia, A. Besana, J.D. Kunic, M.L. Will, E.J. Velasco, J.J. Bair, A. Ghidoni, I. Cetin, D.L. Van Dyke, M.J. Wick, B. Brost, B.P. Delisle, F. Facchinetti, A.L. George, P.J. Schwartz, M.J. Ackerman. - In: JAMA. - ISSN 0098-7484. - 309:14(2013 May), pp. 1473-1482.

Long QT syndrome-associated mutations in intrauterine fetal death

I. Cetin;
2013

Abstract

Importance: Intrauterine fetal death or stillbirth occurs in approximately 1 out of every 160 pregnancies and accounts for 50% of all perinatal deaths. Postmortem evaluation fails to elucidate an underlying cause in many cases. Long QT syndrome (LQTS) may contribute to this problem. Objective: To determine the spectrum and prevalence of mutations in the 3 most common LQTS susceptible genes (KCNQ1, KCNH2, and SCN5A) for a cohort of unexplained cases. Design, Setting, and Patients: In this case series, retrospective postmortem genetic testing was conducted on a convenience sample of 91 unexplained intrauterine fetal deaths (mean [SD] estimated gestational age at fetal death, 26.3 [8.7] weeks) that were collected from 2006-2012 by the Mayo Clinic, Rochester, Minnesota, or the Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. More than 1300 ostensibly healthy individuals served as controls. In addition, publicly available exome databases were assessed for the general population frequency of identified genetic variants. Main Outcomes and Measures: Comprehensive mutational analyses of KCNQ1 (KV7.1, LQTS type 1), KCNH2 (HERG/KV11.1, LQTS type 2), and SCN5A (NaV1.5, LQTS type 3) were performed using denaturing high-performance liquid chromatography and direct DNA sequencing on genomic DNA extracted from decedent tissue. Functional analyses of novel mutations were performed using heterologous expression and patch-clamp recording. Results: The 3 putative LQTS susceptibility missense mutations (KCNQ1, p.A283T; KCNQ1, p.R397W; and KCNH2[1b], p.R25W), with a heterozygous frequency of less than 0.05% in more than 10 000 publicly available exomes and absent in more than 1000 ethnically similar control patients, were discovered in 3 intrauterine fetal deaths (3.3% [95% CI, 0.68%-9.3%]). Both K V7.1-A283T (16-week male) and KV7.1-R397W (16-week female) mutations were associated with marked KV7.1 loss-of-function consistent with in utero LQTS type 1, whereas the HERG1b-R25W mutation (33.2-week male) exhibited a loss of function consistent with in utero LQTS type 2. In addition, 5 intrauterine fetal deaths hosted SCN5A rare nonsynonymous genetic variants (p.T220I, p.R1193Q, involving 2 cases, and p.P2006A, involving 2 cases) that conferred in vitro electrophysiological characteristics consistent with potentially pro-arrhythmic phenotypes. Conclusions and Relevance: In this molecular genetic evaluation of 91 cases of intrauterine fetal death, missense mutations associated with LQTS susceptibility were discovered in 3 cases (3.3%) and overall, genetic variants leading to dysfunctional LQTS-associated ion channels in vitro were discovered in 8 cases (8.8%). These preliminary findings may provide insights into mechanisms of some cases of stillbirth.
DNA mutational analysis; mutation, missense; autopsy; ether-A-Go-Go potassium channels; female; fetal death; fetus; gene expression; humans; infant, newborn; KCNQ1 potassium channel; long QT Syndrome; male; myocardium; NAV1.5 voltage-gated sodium channel; retrospective studies
Settore MED/40 - Ginecologia e Ostetricia
Settore BIO/13 - Biologia Applicata
Settore BIO/11 - Biologia Molecolare
mag-2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
joc130036_1473_1482.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/239085
Citazioni
  • ???jsp.display-item.citation.pmc??? 48
  • Scopus 136
  • ???jsp.display-item.citation.isi??? 112
social impact